
Efficient Distributed Recovery Using Message Logging

A. Prasad Sistla and Jennifer L. Welch

GTE Laboratories Incorporated

Absfrucf: Various distributed algorithms am presented,
that allow nodes in a distributed system to recover from
crash failures efficiently. The algorithms are independent
of the application programs running on the nodes. The
algorithms log messages and checkpoint states of the
processes to stable storage at each node. Both logging of
messages and checkpointing of process states can be done
asynchronously with the execution of the application.
Upon restarting after a failure, a node initiates a procedure
in which the nodes use the logs and checkpoints on stable
storage to roll back to earlier local states, such that the
resulting global state is maximal and consistent. The first
algorithm requires adding extra information of size O(n) to
each application message (where n is the number of nodes);
for each failure, O(n2) messages are exchanged, but no
node rolls back more than once. The second algorithm
only requires extra information of size O(1) on each ap-
plication message, but requires O(n3) messages per failure.
Both the above algorithms require that each process should
be able to send messages to each of the other processes. We
also present algorithms for recovery on networks, in which
each process only communicates with its neighbors.
Finally, we show how to decompose large networks into
smaller networks so that each of the smaller network can
use a different recovery procedure.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made ordistributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

@ 1989 ACM O-89791-326-4/89/0008/0223 $1.50

1. Introduction
Distributed computer systems offer the potential ad-

vantages of increased availability and reliability over
centralized systems. In order to realize these advantages,
we must develop recovery procedures to cope with node
failures. For this, the recovery procedures must ensure that
the external behavior of the system is unaffected by the
failures, that is, that the external behavior of the failure
prone system is same as that of a failure free system.
Achieving this goal is complicated by the fact that a node
failure causes a process to lose the contents of its volatile
store and hence its state.

In this paper, we give a precise definition of the recovery
problem using the I/O automaton model and present several
algorithms to solve this problem. The outline of a formal
proof of one of the algorithms is included.

Like many of the standard recovery procedures in the
literature, we use the following two techniques: whenever a
node restarts after a failure, each of the processes at the
different nodes is rolled back to an earlier state using stable
sroruge, so that the resulting global state is consistent; the
external outputs generated by the processes are delayed un-
til it is made sure that the states of processes that generated
the outputs will never be rolled back. Roughly speaking, in
a consistent global state, if the state of one process reflects
the receipt of a message from another process, then the
state of the sender process reflects the sending of the mes-
sage. In order to minimize the roil back for efficiency
consideration, the restored global state should be as recent
as possible.

There are two approaches for achieving a consistent
global state after a failure. One approach is to ensure that

. 223

at all times, nodes keep checkpoints (i.e., previous states) in
stable storage that are consistent with each other. To obtain
the checkpoints, nodes must periodically cooperate in com-
puting a consistent global checkpoint [CL, KT]. Some
methods using this approach require suspending the ap-
plicatian computation while the checkpoint computation is
performed, which is not always feasible in all applications.
Also, the more infrequently the checkpoint computation is
done, the more out-of-date the checkpoints will be, and
thus more work will be lost following a failure.

In the second approach, nodes log incoming messages to
stable storage, and after a failure, use these message logs to
compute a consistent global state. Algorithms that take this
approach can be further classified into those that use pes-
simistic and those that use optimistic message logging.

In pessimistic (or synchronous) message logging, every
message received is logged to stable storage before it is
processed [BBG, PP]. Thus the stable information across
nodes is always consistent. However, this method slows
down every step of the application computation, because of
the synchronization needed between logging and process-
ing of incoming messages.

In optimistic (or asynchronous) message logging, mes-
sages received by a node are logged in stable storage
asynchronously from processing [SY,JZ]. In this case, log-
ging can lag behind processing. Failure-free computation
is not disturbed, but some extra work must be done upon
recovery to make sure that the restored states are consis-
tent. In [JZ], the authors prove that in such schemes, there
is a unique maximal consistent global state that can be
recovered from stable storage. Obviously, one would like
to recover to this state, in order to undo the minimal
amount of the computation performed before the crash.

We present several distributed algorithms, based on
asynchronous message logging, that allow nodes to recover
to the maximal consistent global state after a failure. This
causes a minimal amount of the previous computation to be
undone. Our algorithms am correct as long as no further
failures occur during the recovery procedure.

The first algorithm requires adding extra information of
size O(n) to each application message (where n is the num-
ber of nodes); for each failure, O(n2) messages are ex-
changed, but no node rolls back more than once. The

second algorithm only requires extra information of size
O(1) on each application message, but requires O(n3) mes-
sages per failure. The first two algorithms assume the com-
munication network is fully connected. Our third algorithm
works in any communication network and only requires
processes to communicate with their neighbors. Finally we
discuss how to decompose large networks into smaller net-
works that can use independent recovery procedures.

Other recovery methods based on asynchronous message
logging are presented in [SY] and [JZ]. Although our first
algorithm is similar to that in [SY], the one presented in
[SY] can, in the worst case, cause a process to roll back
O(2’) times, and thus generate an exponential number of
messages, in response to a single failure. The algorithm in
[JZ] is a centralized one; we believe distributed algorithms,
such as ours, are more suited to the nature of this problem

In Section 2, we give a precise description of the
problem Section 3 contains some definitions about consis-
tent state intervals and message logging. In Section 4, we
present the first algorithm together with the proof of cor-
rectness. In Section 5, we present our second algorithm.
Section 6, discusses extensions to our work for arbitrary
networks. The Appendix is a summary of the I/O
automaton model [LT], which we use for our formal treat-
ment.

2. Problem Statement
We consider a system of n nodes that communicate with

each other and with the outside world through messages.
Between each ordered pair of distinct nodes there is a mes-
sage channel. The channel delivers messages from one
node to the other in the order in which the messages were
sent; it does not lose, duplicate or insert messages; each of
the messages is delivered after an arbitrary finite delay.
We model an arbitrary distributed application program as a
set of application processes running on the various nodes.
The application processes communicate by sending mes-
sages. Upon receiving a message, an application process
can change its local state in an arbitrary way, as long as it is
deterministic, and send messages to the outside world and
to other application processes.

In order to define the recovery problem, we consider two
systems: an ideal system in which failures do not occur,

224

which we call the reliable system or RSys; and the actual
system in which failures can occur, which we caI1 the
failure-prone system or FSys.

In a reliable system, each node runs an application
process together with a bu@er process. The buffer process
buffers all the incoming messages and delivers them to the
application process; it also buffers all the messages
generated by the application process and sends them to
their destinations, which can be other nodes or the external
world.

In a failure-prone system, each node funs an application
process and a recovery process. Each of the nodes can
crash and then restart. The problem is to design algorithms
for the recovery processes so that failure-prone system be-
haves like the reliable system, as far as the external world
is concerned -- that is, for the set of interactions between
the failure-prone system and the outside world to be a sub-
set of the set of interactions between the reliable system
and the outside world.

The recovery processes can use stable storage, storage
that is unaffected by failures. In more detail, each node’s
local state is partitioned into volatile and stable state. After
a node crashes, the node’s volatile state is initialized, but
the stable state is unchanged. We assume for simplicity of
presentation that the application process only accesses
volatile state. The recovery process acts as a layer around
the application process, and filters aII messages going into
and coming out of the application process. Messages
originating in the application process are called application

messages, and messages originating in the recovery process
are called recovery messages. Both kinds of messages use
the same channels.

The rest of this section formalizes these notions using
I/O automata. A brief introduction to I/O automata is given
in the appendix. We present each of the components of the
system as an I/O automaton. Through out the paper, we use
the following definition of fairness of an execution, An
execution is fair, if whenever an action is enabled in a state
of the execution then eventually the action either occurs or
gets disabled in the execution.

For any two nodes p and q, the automaton Channel@,q)
is defined as follows. Let M be the set of all messages.
Intuitively, the state of the automaton is given by a queue
which the sequence of messages sent by node p to node q

that ate not yet received by q. The set of input actions to
channel(p,q) consist of actions of the form Send@,m,q), for
alI m in M. The effect of the action Send@,m,q) is to add
the message to the queue of messages to be sent. The set of
output actions consist of actions of the form l&xv(qJn,p),

for all m in M. The action Recv(q,m,p) is only enabled in
those states in which the message m is at the head of the
queue; the effect of this action is to remove m from the
head of the queue.

225

A reliable node p is modeled by a pair of automata, one
buffering the incoming and outgoing messages, and the
other representing an arbitrary application process (See
Figure 2-2). Messages from the outside world and mes-
sages from other nodes arrive asynchronously. The buffer
automaton stores them in queues and feeds them one-at-a-
time to the application process upon request, implementing
a nondeterministic merge of all the incoming queues. The
buffer automaton and the automaton modeling the applica-
tion process at node p are denoted by Bu#Ip) and App@)

respectively. B@(p) delivers an input to App@) using an
action of the form Deliver@,m,q). The .automaton App@)

after processing an input communicates with Bujj@) using
an output action of the form SendOut@,M) where M is an
n+l array and M[q] contains the value of the message to be
sent to q. The outputs sent by App@) using an action of the
form SendOut(are buffered by &&7p) before they are
sent to their destinations.

Let ME be the set of ail messages used for communica-
tion between the environment and the nodes, and let MA be

2.1. Reliable System
We assume that the system consists of a set P of n

nodes. For every ordered pair @,q) of distinct nodes, there
is a channel from p to q (See Figure 2-l). The channel
from p to q provides FIFO delivery of every message sent
from p to q without losing or duplicating or inserting mes-
sages. There is no fixed upper bound on the delay between
the sending and receipt of a message. Nodes also com-
municate with the outside world, or environment, directly
through messages. Let P’=Pu{env}.

the set of all messages used for communication between the
application processes.

The state of Bz@.p) is composed of the following vari-
ables. For all q (but p) in P’ there is a queue inq[q] con-

taining all undelivered messages received from q, and there
is a queue outq[q] that contains all unsent messages to q.

All these queues are initially empty. The state also contains
a boolean variable ready which is initially false. This vari-
able is used to make the Deliver and SendOut actions alter-
nate.

The input actions of Bum) are the following: In@&,
for all rn in ME; Recv(p,m,q), for all m in MA and all q (but
p) in P; and SendOut@,M), for all arrays M such that for all
i<n, M[i] is in MA and M[n+l], which we denote by
M[env], is in ME. The effect of In@,& is to add m to
inqlenv]. The effect of Recv@,m,q) is to add m to inq[q].

The effect of SendOut@,M) is to set ready to true and add
M[ql to outq[ql for all q (butp) in P’.

The output actions of Bu.) are’ the following:
Deliver@,m,q), for all m in MAuME and all q (but p) in P’;

Send@,m,q), for all m in MA and all q (but p) in P;
Out@,m), for all m in ME The action Deliver@,m,q) is
enabled only when m is at the head inq[q] and reudy=true;
its effect is to remove m from inq[q] and set reudy to false.
The action Send@,m,q) is enabled when m is at me head of
outq[q], and its effect is to remove m from outq[q]. The
action Out@,m) is enabled when m is at the head of
outq[env], and its effect is to remove m from this queue.

The automaton App@) represents an arbitrary applica-
tion process which is deterministic and which satisfies the
following conditions.

(1) The input actions of App@) are Deliver@,m,q), for
all m in MAWME and all q (but p) in P’; the output actions
of App@) are SendOut@,M) for all message arrays M from

P*
(2) App@) must preserve well-formedness for p -- a se-

quence of actions o of App@) is defined to be well-formed

for-p if o is a prefix of the infinite sequence (SendOut@,.)
Deliver@,.,.))“. (See Appendix for definition of
“preserve”.)

Let RSys be the automaton modeling the reliable system,
obtained by composing Buff@), App@), and Channel@,q)
for all p and q in P, and then hiding all actions except

In@,m) and Out(p,m) for all p in P and all m in ME. (See

Appendix for definition of “hide”.)
It is easy to see that Buff@) preserves well-formeduess

for p, for all p in P, and every schedule of RSys is well-
formed for p, for all p in P.

2.2. Failure-Prone System
Now we consider failures. We assume that nodes can

crash but that channels are reliable.
To model a failure-prone node, we replace the

automaton Buff@) with another automaton Recov@),
representing the recovery process. Recov@) acts as a filter
or layer around App@)(See Figure 2-3).

We must make the following changes to App@), result-
ing in an automaton named App’@). We add more input
actions: Crash/Restart(p), which initializes its state, and
Restore@,.s) for all states s of App@), which restores its
state to that specified by s. The state sets of App@) and
App’@) are the same.

Recov@) must satisfy the following conditions. Let MR
be the set of all messages used for communication between
the recovery processes.

(1) The input actions of Recov@) are In@,m) for all m in
ME, Recv@,m,q) for all m in MR and all q (but p) in P,

SendOut@,M) for all messages arrays M from p, and
Crash/Restart(p). The output actions of Recov@) are
Send@,nz,q) for all m in MR and all q (but p) in P, Out@,@
for all m in M,J+ and Deliver@,m,q) for all m in MAWME

and all q (butp) in P’.

(2) The state of Recov@) is partitioned into volatile and
stable. The effect of the Crash/Restart@) action is to set
the volatile part to its initial value and to leave the stable
part unchanged.

(3) Let FSys be the automaton modeling the failnre-
prone system, obtained by composing Recov@), App’@),
and Channel@,q) for all p and q in P, and then hiding all
actions except In@,m) and Out(p,m) for all p in P and all m

in ME We require that for any fair execution e of FSys in
which at most one Crash/Restart action occurs, there is a
fair execution f of RSys such that ejext(RSys) =Aext(RSys).
Thus, the two executions have the same external behavior.

226

3. State Intervals and Consistency
Given any execution e of RSys, we make the following

definitions relative to e.
For each p in P, divide e into state intervals: a new state

interval begins with each Deliver@,.,.) action. State inter-
vals are numbered sequentially starting at 0; the number, or
index, of a state interval s is denoted index(s). Suppose
state interval s contains Deliver@,m,q) and SendOut@,M).
Then m is said to start s and all the messages in M are said
to be generated in s.

We defme a binary relation directly depends on among
state intervals of e. Let s and t be state intervals of p and q

in e.

l If p=q and index(s)2 in&x(t), then s directly depends on
1.

l Ifp f q and s is started by a message generated in t, then s
directly depends on t.

We define a binary relation transitively depends on

among state intervals of e to be the transitive closure of
Virectly depends on”. This is the same as the partial order
“happens before” of Lamport [La].

A global state of execution e is an n-vector (il, . . . ,i,)

such that for all p, ip is the index of a state interval of p in
e. (This is a slight abuse of notation, because the elements
of a global state are not local states but are indices; also
note that there is no requirement that the collection of state
intervals corresponding to the indices be a collection that
could all occur at the same time in the execution.)

We define a global sfate (iI, . , . ,i,) to be consistent in
execution e if for all p, each message delivered to App(p)
by the start of p’s $-th state interval is generated by some q

during or before q’s iq-tb state interval. It follows easily
that global state (iI, . . . ,i,) is consistent in e if for all p and
q in P, p’s ip-th state interval does not transitively depend
on any state interval of q with index > i

9’
We define a partial order 5 between global states of

execution e as follows. Let S=(i,, . . I ,i,) and
T=o’p . . . jn) be global states of e. We define S< T if and
only if ip 5jp for all p. In this case, S is said to be below T.

The following lemma is from [JZ].
Lemma 1: Fix an execution &of RSys.
(1) All the global states of e form a lattice with respect to

the partial order 5.
(2) For a fixed global state R of e, all the consistent

global states of e below R form a lattice with respect to 5.

(3) There is a maximum (with respect to 5) consistent
global state of e below any fixed global state R of e.

The next definition and lemma are the key to the correct-
ness of our methods of finding the maximum consistent
global state. Let S=(il, , . . , in) be a global state of execu-
tion e. Define max-below(S)=(jl, . . . &) as follows. For
all p, let jP be the maximum integer 5 ip such that, for all q,

p’s jP-th state interval does not transitively depend on the
(i 4 +l)-st state interval of q.

Lemma 2: For any global state S of execution e,
max-below(S) is the maximum consistent global state
below s.

4. Algorithm With Transitive Dependencies
In this section we describe our first algorithm. Recovery

processes maintain transitive dependencies between state
intervals of their corresponding application processes,
which enables them after a failure, to find the maximum
consistent global state (below the most recent logged state
intervals at the time the processes begin the recovery). A
tag of size O(n) is added to each application message.
After a failure, only O(n2) recovery messages need to be
exchanged, and each application process only needs to roll
back once, in order to return the system to the maximum
consistent global state.

In Subsection 4.1, we describe the algorithm informally.
This version actually does not include checkpointing. Sub-
section 4.2 contains the formal description of the algorithm
and Subsection 4.3 the proof of correctness. We describe
our checkpointing mechanism in Subsection 4.4 and dis-
cuss an optimization using volatile storage in Subsection
4.5.

4.1. Norma1 Operation
Recov@) keeps in volatile storage n queues of incoming

messages waiting to be delivered to the application process,
one queue for the environment and one for every node
other than p. When Recov@) receives an input from the
environment (cf. the In action) or a message from another
node (cf. the &Xv action for au application message), it
adds the message to the end of the appropriate queue.

Recovery processes maintain the transitive dependencies
between state intervals of their corresponding applicatiou

227

processes in the following way. Each recovery process p

keeps an n-vector TDp; intuitively, TD[p] is the index of
p’s current application state interval, and ZD[q], q#p, is
the highest index of any state interval of q’s application
process on which p’s current application state interval tran-
sitively depends. Initially ZZJ@] is 0 and the other ele-
ments are -1. All application messages generated by p are

tagged with the current value of TD. Upon receiving an
application message with tag V, p increments TDlp] by l,,
and sets TD[q], q;tp. to the maximum of TD[q] and V[q].

(The same technique for maintaining transitive depen-
dencies is used in [SY].)

We now describe the interaction between the recovery
process aud the application process. Once the application
process has indicated that it is ready to accept another mes-
sage (cf. the SendOut action), Recov@) can deliver to the
application process the fast message, minus its tag, from
one of the queues of incoming messages (cf. the Deliver
action when starus is normal). Then Recov@) updates its
transitive dependency vector and the volatile log recording
the order in which messages arc delivered. The application
process then computes, based on the message just delivered
to it, and eventually performs a SendOut action. When a
SendOut occurs, Recov@) tags each message with the cur-
rent value of the transitive dependency vector and puts it in
a queue of outgoing messages for that recipient. The mes-
sage at the head of an outgoing queue, for any recipient
except the environment, is always enabled for sendiug (cf.
the Send action).

No output directed to the environment should occur until
it is guaranteed that the state interval that generated this
output (and thus the output itself) will never be rolled back.
Extra mechanism is needed to ensure this condition.
Recov@) keeps an array N (N for “notified”); N[q] is the
maximum state interval of q that p has heard is logged in
q’s stable storage. Nodes periodically communicate their
maximum logged state interval in Notify messages (cf. the
Notify action and the Recv action for a Notify message).
An Out action can occur once the message is at the head of
the output queue and the generating state interval only tran-
sitively depends on other state intervals known to be
logged.

In order to recover from crashes, which initialize volatile

storage, recovery processes make use of stable storage. .
Periodically, Recov@) writes the volatile log of delivered
messages to a log on stable storage (cf. the Log action).
The logging is not synchronized with the receipt or sending
of application messages or with the delivery of messages to
the application process. In order to avoid losing inputs
from the environment, Recov@) immediately writes each
input to another log on stable storage when an In action
occurs; a counter is used to keep track of how many inputs
have occurred in order to identify the entries in this log.
Similarly, in order to avoid duplicating outputs to the en-
vironment, Recov@) immediately writes an indication that
an output has occurred to stable storage (in the form of
S-East-out). (Compacting of these stable logs is discussed
in Section 4.4.)

4.2. Handling a Failure
We model a crash followed by a restart as a single ac-

tion, Crash/Restart. When a node crashes and restarts, its
volatile state is initialized. Then its status is set to
9ecovering” and it sends an Init message to all other nodes
with the value of the index of the maximum state interval
obtainable from the stable log. Upon receiving au Init mes-
sage (cf. the Recv action for an Init message), a process
broadcasts the index of its latest logged message in a Relay
message, changes its status to recovering, and empties all
input and output queues as well as the volatile log.
Recov@) collects the values sent in Init aud Relay mes-
sages into an array L. Once p has received recovery mes-
sages from all the processes (so that L is completely filled
in), the Restore action is enabled.

After Restore occurs, the application process’ state is set
to the chcckpointed state from stable storage and
Recov@)‘s status changes to “replaying” (or back to nor-
mal if the stable log is empty). Then Recov@) feeds suc-
cessive messages to the application process as before, but
the messages are drawn from the stable log instead of the
volatile incoming queues (cf. the Deliver action when
status is replaying). This replaying continues until the end
of the stable log or just before reaching a message that is an
“orphan” with respect to L. A message with transitive
dependency vector V is an orphan with respect to L if

V[q] >L[q] for some q, i.e., the message was generated in a

228

state interval that transitively depends on an unlogged state
interval. Then the rest of the stable log is discarded, the
status is returned to normal, and all the inputs that either
were lost from the environment’s volatile incoming queue
before being delivered or may have accumulated during the
recovery/replay procedure are added to the end of the
environment’s incoming queue.

The In action always adds the input to the stable input
log, but only adds the input to the environment’s (volatile)
queue of incoming messages if the node’s status is normal.
If the node’s status is not normal, then the inputs are col-
lected in the stable log and are added to the end of the
volatile queue when replay is complete (as discussed
above).

During replay, the application process will generate
duplicates of messages and outputs that it generated before
the recovery. Duplicate outputs, i.e., outputs that have al-
ready occurred, can be detected by comparing the index of
the generating state interval with the variable S-lust-out;

duplicates are simply discarded while non-duplicates are
added to the outgoing queue. Duplicate messages to other
nodes are simply sent on by the recovery process. The
recipient’s recovery process filters out the duplicates at the
point when it is choosing the next message to deliver as
follows (cf. the Deliver action when status is normal).
Each recovery process keeps a vector of direct depen-
dencies, LID, which is updated whenever a message is
delivered to the application process. Any message from q

to p whose generating state interval index is not greater
than DD[q] at p is a duplicate and is discarded by p.

Any application message that is received during the
recovery/replay procedure is added to the end of the ap-
propriate incoming queue for later processing, unless the
recipient is waiting to receive a Relay message from the
sender (in which case the message is discarded).

4.3. Formal Description
We now describe the automaton Recov@).

STATE:

Volatile:
DD [q] for all q (but p in P: maximum state interval of q
on which p’s current state interval directly depends, used
to filter duplicate messages;

initially - 1
inq[q] for all q (but p) in P’: FIFO queue of messages re-
ceived from q and not yet delivered; initially empty

L[q] for all q in P: maximum state interval of q that is
logged, used in recovery; initially 0

log: FIFO queue of messages delivered to application
process; initially empty

N[q] for all q in P: maximum state interval of q that is
known top to be logged, used to commit outputs;
initially 0

rum-in-delivered: number of inputs (from environment)
delivered to application process; initially 0

outq[q] for all q (but p) in P’: FIFO queue of messages
fromp to q waiting to be sent; initially empty

ready: boolean controlling when to deliver next
message; initially false

restore: boolean controlling when to restoR appli-
cation state; initially false

TD[q] for all q in P: maximum state interval of q on
which p’s current state intervaI transitively depends;
initially T.lp]=O and rest are -1

status: normal, recovering, replaying; initially normal

Stable:
S-chkpt: checkpointed state of application process;
initially the start state of App@)

S-DO: value of DD associated with state in S-chkpt;
initially -1

S-inputs: FIFO queue of inputs from environment that
have occurred so far; initially empty

S-lust-out: index of state interval of last output that
occurred; initially nil

SJog: FIFO queue of messages delivered to appli-
cation process; initially empty

S-num-in: number of inputs that have occurred so far;
initially 0

S-num-in-delivered: number of inputs processed by
checkpointed state interval; initially 0

S-TD: value of TD associated with state in S-chkpt;
initially S_TD@]=O and rest are -1

Define the derived variable 1ast~Zogged~inde~ to be
SFTD[pJ plus the number of entries in S-log.

INPUT ACTIONS:

SendOut@&) for all message arrays M for p
efi if status = normal then

ready := true
add (M[q],TD) to end of outq[q] for all q (but p)

in P’ with M[q] not empty
endif
if (sfatus = replaying) then

ready := true
add (M[q],TD) to end of outq[q] for all q (but p)

in P with M[q] not empty
if M[env] not empty and TD[p] > S-last-out then

add (M[env],TD) to end of ourq[env]
endif

229

if (no more messages in S-log) or
(next message in S-log is an orphan

with respect to L) then
discard rest of S-jog
add I to end of inq[env], where I is the suffix

of S-inputs since num-in-delivered
Nip] := lastJogged_index
status := normal

endif
endif

Xn@,m) for all m in ME
effz S-num-in := S num-in+ 1

add (m,S-numjn) to end of S-inputs
if status = normal then

add (m,S-num-in) to end of inq[env]
endif

Recv@,m,q) for all m in MR and all q (butp) in P
eff:
case m=(m’,V), m’ in MA:

if status = normal or L[q] + nil then
add m to end of inqlq]

endif
case m= Init(

L[q] := 1
Lip] := last-logged-index
status := recovering
N[r] := 0 for all I in P
ready := false
log := empty
inq[r] : = empty for all r (but p) in P’
outq[r] := empty for all I (but p) in P
if Lfr] # nil for all r in P then restore := true endif
add Relay(L[p]) to end of outq[r] for all r (but p) in P

case m = Relay(Z):
L[q] := 1
if status = recovering and
L[r] # nil for all r in P then

restore := true
endif

case m = Notify(Z):
if status = normal or L[q] f nil then N[q] := 1 endif

CraMRestart@)
effr initialize volatile variables

status : = recovering
LIp] := last-logged-index
add Iuit(L@]) to end of outq[q] for all q (butp) in P

OUTPUT ACTIONS:

Out@,m) for all m in ME
pre: (m,V) is at head of outqlenv]

V[q] _<N[q] for all q in P
eff: remove (m,!J) from head of outq[env]

S-Zast-out : = V[p]

Send@,m,q) for all m in MA and all q (but p) in P
pre: m is at head of outq[q]
eff: remove m from head of outq[q]

Deliver@,m,q) for all m in MAUME and all q (butp) in P’
pre: ready = true

status = normal
if q=env then

(m,V) is at head of inq[env]
else

(m,V) is first entry in inq[q] with Vfq] >DD[q]
endif

eff: ready := false
remove (m,V) and any skipped entries

Tom head of inq[ql
add (m,V,q) to end of log
TD@] :=TDIp]+l
if q=env then

num-in-delivered := V
else

TD[r] := max(TD[r],v[r]) for all r (but p) in P
Dm?l := ml

endif

Deliver@,m,q) for all m in MAwME and all q (butp) in P
pre: ready = hue

status = replaying
(m,V,q) is next message in S-log

eff: reudy := false
TDIp]:=TDlp]+l
if q=env then

num-in-delivered := V
else

TD[r] := mw(TD[r],v[r]) for all r (but p) ia P
~WII := w

endif

Restore@& for all states s of App’@)
pre: restore = true

s = s-chkpt
eff: restore := false

num-in-delivered := S-num-in-delivered
I;[q] := nil for all q in P
TD := SWTD
DD := S-DD
if (SJog is empty) or
(first message in S-log is an orphan

with respect to L) then
status := normal
discard rest of S-log
add 1 to end of inq[env], where I is the suffix of

S-inputs since num-in-delivered
N[p] := last-logged-index

else
status := replaying

endif

INTERNAL ACTIONS:

230

W$P)
pre: status = normal

log+ empty
effz log:= empty

add log to end of SJog
N@] := last-logged-index

Notify@)
pre: status = normal
eff: add Notify(Nlp]) to end of outq[q] for all q (but p)

in P

4.4. Correctness
The algorithm just presented is correct provided that no

further failures occur while the system is recovering from a
previous failure. For ease of notation, the proof in this
section assumes that at most one crash occurs in the entire
execution, but it can be extended in an obvious way to
handle any finite number of failures (as long as no failures
occur during the recovery procedure). In the full version of
the paper, we will prove that the algorithm can handle an
infinite number of failures; this will require a different no-
tion of fairness.

We must show that for every fair-execution e of FSys
(with at most one Crash/Restart), there is a fair execution e’
of RSys such that e and e’ have the same sequence of
external actions. It is important for e’ to be fair in order to
rule out useless “solutions” in which no outputs am ever
performed in the execution e.

First we show that every execution e (fair or not) of
FSys (with at most one Crash/Restart) can be mapped to an
execution of RSys with the same external behavior. Then
we show that if e is fair, its image under this mapping is
also fair.

We use the following method for proving that every ex-
ecution e of FSys (with at most one Crash/Restart) can be
mapped to an execution e’ of RSys with the same external
behavior. Essentially e’ is the result of performing cut-and-
paste operations on the original execution, deleting the part
of each process’ computation that is rolled back after a
failure. In order to define e’ precisely, we define two map-
pings, S and A. Roughly speaking, S maps the state of FSys
at a given position in e to a state of RSys and A maps the
action of FSys at a given position in e to an action of RSys
or to me empty string. We obtain a sequence of alternating
states and actions of RSys by replacing each state and ac-

tion in e with its image under S or A and “patching” the
holes left when A is empty. To show that this sequence is
the desired execution e’, we must show that the mappings S
and A satisfy certain conditions.

For the rest of this subsection, fix an execution
e=S(plSl . . . of FSys in which at most one Crash/Restart
occurs. Let length(e) be the number of actions in e (it
could be infinite).

It is easy to see that each node p executes as follows.
First, p computes with normal status, exchanging applica-
tion messages and Notify messages with other nodes,
delivering messages to the application process, receiving
inputs and generating outputs. At some point, p either
experiences the Crash/Restart or receives an Init message
from the node that crashed. Then p changes its status to
recovering and sends Relay messages to the other nodes.
Once p has received Relay or Init from all other processes,
p restores the state of the application process to the check-
point and replays the messages in the stable log until reach-
ing the end or an orphan. During the replay, the status is
replaying. Then the status is set back to normal and p

continues in the manner before the crash.
For each p, let lp be the value of last-logged-indexp just

before p crashes or receives an Init message, and let vp be
the value of TDplp] when status(p) switches from replay-
ing to normal, i.e., the index of the state interval to which p

recovers.
Lemma 3 states that the TD variables correctly track the

transitive dependencies between application state intervals.
This lemma, together with Lemma 2, is used to prove
Theorem 4, which states that the algorithm finds the max-
imum consistent global state below the last logged indexes
(at the time the processes begin the recovery).

Lemma 3: In every state of e, for all p and q. TD#q] is
the index of the highest state interval of q on which p’s
current state interval transitively depends.

Theorem 4: The maximum consistent global state
below (Zl, . . . ,1,) is (vl, . . . ,v,).

Now we define the mappings. For each p, divide e into
five parts:
l Part 1 for p goes from the first state in e to the state
immediately before the Crash/Restart(p) action,
Recv@,Init(Z),q) action, or the (vp+l)-st occurrence of a
Deliver@,.,.) action, whichever occurs first.

l Part 2 for p goes from immediately after the end of Part 1

231

to the state immediately before the Crash/Restart@) or
Recv@,Init(Z),q) action. (It can be empty.)

l Part 3 for p goes from immediately after the end of Part 2
to the state immediately before the Restore@) action (i.e.,
it is the time when status@) has value recovering).

l Part 4 forp goes from immediately after the end of Part 3
to the last state in which sratus@) has value replaying. If
the next action in Q is SendOut@,M) that also occurred
earlier in e, then this action is included in part 4 for p. (If
no states have stutusp equal to replaying, then part 4 for p
consists solely of the Restore@) action.)

l Part 5 for p goes from immediately after the end of Part 4
to the end of the execution.

The extra condition in the definition of part 4 is needed
to handle the case when part 3 for p begins before p’s vp-th

SendOut action occurs. Thus in the replay, the last Sen-
dOut is not a duplicate of a previous action from part 1.

The action mapping essentially deletes all actions for p

between the time p reaches its vp-th state interval at the end
of part 1 and the time p finishes replaying at the end of part
4, except for In and Out actions, and Send and Recv actions
for messages that were either generated in the sender’s part
1 or were generated in the sender’s part 4 and are not
duplicates (Le., the first copy of this message was lost from
the sender’s outq at the start of part 3). The state mapping
reflects the values of re&y and App’@) during parts 1 and
5 for p and freezes them during parts 2, 3, and 4 at their
values at the end of part 1. The most complicated part of
the state mapping is defining the contents of the message
queues to reflect the action mapping correctly.

Let NA be the set of all integers between 1 and Zen@(e)
inclusive. Define a mapping A from NA to ac?s(RSys) u
{E}, where E is the empty string, as follows.
l Ifni is In@,m) or Out@& then A(i)=xk
l If ni is Deliver@,m,q) or SendOut@Jlrf), then A(i)=lri if ni
is in part 1 or 5 forp and A(i)=& otherwise.

l Suppose Xi is Recv@,(m,V),q). A(i)= Rav@,m,q) if 111 is
generated in q’s part 1 or 5 or if m is generated in q’s part
4 and there is no preceding ~:i action in e. Otherwise
A(i)=&.

l Suppose Zj is Send@,(m,V),q). A(i)= Send@,m,q) if m is
generated in p’s part 1 or 5 or if m is generated in p’s part
4 and there is no preceding ni action in e. Otherwise
A(i)=E.

l For any other value of np A(i)=&.

We add subscripts to the state variables in order to dis-
tinguish the same variable at different nodes. Each variable
of Buff@) or Recov@) is subscripted with p. The channel

variable of Channel@,q) is subscripted with pq.

Let Ns be the set of all integers between 0 and Zen@(e)

inclusive. Define a mapping S from Ns to stutes(RSys) as
follows. For S(i), we must define the state of App@), as
well as values for channel p4’ ivp[41. o%p[41, a&
readyp, for all p and q.
l App@): SZNIX as App’@) in s if Sj is in part 1 or 5,
otherwise the same as App’@) in e at the end of part 1.

l ready : sameasreadypinsifsiisinpart 1 or5forp;
same $J reudyp at end of part 1 for p if Si is in part 2.3 or
4 for p.

l inqp[q], q#env: Take the sequence of application mes-
sages in Recv@,.,q) actions in e up to sfi discard any mes-
sages generated in q’s part 2, discard any messages
generated in q’s part 4 that are duplicates of any generated
in q’s part 1, and discard any messages already delivered
to APP’@).

l inqp[env]: Take the sequence of messages in In@,.) ac-
tions in e up to Si and discard any messages delivered in
p’s part 1.

l outq
B

[q], q f env: Take the sequence of messages for q in
Sen Out@,.) actions in e up to si, discard any messages
generated in p’s part 2, 3 or 4, and discard any messages
already sent (in a Send@,(m,V),q) action).

l outq
B

[env]: Take the sequence of messages for env in
Sen Out@,.) actions in e up to si, discard any messages
generated in p’s part 2, 3 or 4, and discard any messages
already sent (in an Out@,m) action).

l channel
Send@,.fq 9

: Take the sequence of application messages in
actions in e up to si, discard any messages

generated in p’s part 2, discard any messages generated in
p’s part 4 that are duplicates of any generated in p’s part
1, and discard any messages already received.
Define a mapping p from Ns to alternating sequences of

states of RSys and actions of RSys inductively as follows.
p(O)=S(O). If A(i) is empty, then p(i)=p,(i-1), otherwise
p(i)=p(i-l)A(i)S(i). Define e’ to be the limit of p(i), i2 1.

Lemma 5 states that the mappings satisfy certain con-
ditions. Lemma 6 shows that consequently e’ is the desired
execution of RSys.

Lemma 5: (a) A(i)lext(RSys) -IF#Xt(FSyS) for all i in

NA*
(b) S(0) is the start state of RSys.
(c) Choose any i in NA. If A(i) is empty, then

S(i-l)=S(i). If A(i) is not empty, then (S(i-l),A(i),S(i)) is a
transition of RSys.

Proof: Parts (a) and (b) are true by the definitions of the
mappings. We sketch the proof of (c) for two interesting
cases.

Case 1: 7Ei’ Out@,m). So (m,V) is at the head of

232

outqp[env] and VlNp III Si-1. We must show that m is at
the head of oufqp[env] in S(i-1).
l Suppose Ici is in part 2 for p. We must show that m is
generated in part 1 for p. This is equivalent to showing
that V/p] I vp Recall that V<Np. We can show that in
parts 1 and 2 for p, A$<($, . . . ,1,) (where Zp is the last
logged index at the end of part 1 for p). By Theorem 2,
(q, * * * ,v,) is the maximum consistent global state below

(11 , . . . ,I,). By Lemma 1, V is a consistent state and by
the above argument Vl(Z1, . . . &). TllUS

VI(Vl, . . . ,v,).

l Suppose xi is in part 5 for p, The heart of the argument is
that p’s part 4 mimics part 1 and S-lust-out correctly fil-
ters out duplicate outputs.

Case 2: nl= Deliver@,m,q). If q=env, then (m,V) is at
the head of inqp[env] in siml, and if q #env, then (m,V) is
the first entry in inqp[q] with v[q] > DDp[q].
l Suppose i is in part 1 forp. It is enough to show that m is
at the head of inqp[ql in S(i-1). If q=env, this is obvious.
Suppose q#env. By Theorem 2, (vl, . . e ,v,) is a coosis-
tent global state. Thus all messages delivered in part 1 of
p are generated in part 1 of q. Thus Qq] I ‘(4. The defini-
tion of S implies that m is in inqp[q] in S(l--1). It can be
shown that M is at the head of inqp[q] in Si-1, and thus m
is at the head of inqp[q] in S(i-1).

l Suppose i is in part 5 for p. If q=env, then it is enough to
show that S-inpurs and num-in-delivered correctly cause
inq P [envl to be set after the replaying. If q f env, then it is
enough to show that the replaying of q mimics the com-
putation of q during part 1 for q.

Lemma 6: e’ is an execution of RSys and e’lext(RSys) =
elext(FSys).

Proof: By part (a) of Lemma 5, the external behaviors
are the same. Use parts (b) and (c) of Lemma 5 to show
inductively that for all i, p(i) is an execution of RSys and
S(i) is the final state of p(i).

We now show that if e is fair, then e’ is also fair.
Lemma 7: If e is fair, then e’ is fair.
Proof: We must show that once a locally-controlled (i.e.,

output or internal) action of RSys becomes enabled in e’, it
eventually occurs or becomes disabled in e’. The argument
for Out(p,m) is based on the fact that messages continue to
be logged and Notify messages continue to he sent, so that
eventually every output at the front of the output queue can
be committed.

4.5. Checkpointing
In the algorithm just presented, the stable logs (S-log

and S-inputs) grow without bound, forever increasing. Ob-
viously this causes space problems. In addition, the longer
the log is, the more time it takes processes to complete the
recovery procedure. These problems can be avoided by
periodically s ummarizing some prefix of the logs in a
checkpointed state of the application process.

Define an application state interval to be guurunteed

relative to a state of Recov@) if the state interval is started
by message (m,V) and vlq]<N[q] for all q in P. A
guaranteed state interval will never be rolled back. Periodi-
cally each process p sends a “guarantee” message to each
other process q containing the value of DDp[q] (direct
dependency) associated with its maximum guaranteed state
interval. Upon receiving a guarantee message with value 1

from q, process p updates Cp[q] to be equal to 1. Process p

need never resend to q any message generated in p’s state
interval 1 or earlier, since q has all these messages in stable
storage and will never roll back past them.

Process p may perform the Chkpt@) action to compact
the logs up to state interval 1, where 1 is coniputed as fol-
lows. Let 1 be the maximum state interval index such that
for all qzp, either Z<C[ql or no application message is
generated for q in any state interval between C[q] and 1.

The logs can be compacted up to state interval I because p

will never roll back past I, and for every state interval of p

up to I, no application message that p sends in that state
interval ever needs to be resent. The state of App’@) cor-
responding to the I-th state interval, as well as the as-
sociated values of tbe direct and indirect dependency vec-
tors and the number of inputs delivered, are stored in
S-chkpt, S-DD, S-TD, and S-num-in-delivered,

4.6. Optimization
So far, we have been assuming that during recovery,

each recovery process only uses application messages that
are logged on stable storage. For each of the non-failed
nodes, the incoming messages that have been delivered but
not yet logged are available in volatile storage, waiting to
be logged. The recovery processes on these nodes can use
the messages in volatile storage in addition to those logged
on stable storage to recover.

233

it may not be necessary for the application process on a
non-failed node to rolI back. In order to decide whether an
application process should roll back, the algorithm in Sec-
tion 4.2 can be modified as follows.

In response to an Init message, each recovery process
sends its current state interval index in the Relay message
and does not discard its volatile log of delivered messages.
Once L is filled in, p determines if its current application
state interval depends on a state interval LEq]+l of any q,

i.e., if TD[q] > L[q]. If so, then p restores the application
state to the checkpoint and replays the delivered messages
logged in stable storage and in voiatile storage until au
orphan is reached.

5. Algorithm Without Transitive Dependencies
In this section we present a recovery procedure that uses

direct dependencies instead of transitive dependencies.
The key part of the recovery procedure is a distributed
algorithm for finding the maximum consistent global state,
using the logs and checkpoints at the nodes. When a node
restarts after a crash, it.invokes the above algorithm so that
the ap&cation processes can be restored to the appropriate
states. This algorithm is also invoked periodically during
normal computation, for the purpose of committing output
messages and compacting logs.

Every application message sent is tagged with the index
of the current state interval of the sender. Whenever a
recovery process logs a message, it also logs the tag and the
id of the sender with the message.

5.1. Finding the Maximum Consistent Global State
In order to find a maximum consistent global state, the

recovery processes use the following algorithm. The algo-
rithm is initiated by one recovery process broadcasting an
Initiate message containing the highest index of all mes-
sages logged by that recovery process. After receiving the
first Initiate message, each recovery process sends the
highest index of all its logged messages to all the other
processes. After this, recovery process p executes the fol-
lowing. It maintains two n-vectors, old-indexp and
new-indexp, which contain indices of state intervals.

Initially, for each q#p, oZd-index[p[q] contains nil.
1. For each q#p: wait and receive a value from q into

the variable new-index$q].

2. If for each qzp, old-indexp[q]= new-indexp[q], then
exit. Starting from the beginning of the log, find the ear-
liest message such that the next message was generated by
some process q in a state interval with index >
new-inde.xp[q]. Let Lp be the index of this message. (If
there is no such message, let Lp be the index of the last
message in the log.) Send Lp to every other recovery
process q. Update oZd-indexp to be new-indexp.

For alI p, let Zp be the index of the last logged state
interval at process p when it begins the algorithm (i.e.,
when it receives the Initiate message for nodes other than
the initiator, and when it sends it for the initiator).

Theorem 8: If there are no failures after the initiation of
algorithm AO, each recovery process exits the algorithm
after at most n iterations, and the values contained in
Lip a s a ,Ln when a recovery process exits the algorithm
form the maximum consistent global state below
(Zl>. . . J,>.

proof: (Sketch) Consider an execution. We say that the
state interval s of process p has level m dependency, m2 1,
on state interval t of process q if and only if there exist
distinct processes rl, . . . 7m+l with respective state inter-
vals q,. - - Pm+17 such that rl=q, ~-m+~=p, tlul.
u~+~=s, and for all x such that l<x<m+l, a message
generated in state interval ux of process rx is processed by
some state interval before ux+l of process rx+I. Level 1
dependency is the same as direct dependency. Note that in
an execution of a system with n processes, if a state interval
s of some process transitively depends on state interval t of
another process, then s has level m dependency on t, for
somem-cn.

It is easy to show that in the above algorithm, after a
recovery process executes i iterations, the variable
old-index gives the maximum state interval index in the log
such that all the state intervals below this do not have a
level i dependency on the state intervals ZI, . . . ,l,, of
processes 1, . . . ,n respectively. This clearly shows that the
execution of the above procedure terminates within R itera-
tions. From our previous arguments, it follows that Lp after
termination is the maximum state interval index of process
p within the log such that, for ah q, none of the state inter-
vals of process p with index 5Lp depends on a state inter-
val of process q with index above 5. Now using Lemma 2,
it follows that (Ll, . . . J,) is the maximum consistent
global state below (II, . . . ,Z,).

234

5.2. Recovery Procedure
Whenever a node fails and restarts, its recovery process

initiates the algorithm of Section 5.1 to compute the max-
imum consistent global state, and each recovery process
restores its application process to this state. After a
recovery process receives a first recovery message, it ig-
noms and deletes any more application messages that it
receives between successive recovery messages. This
serves the purpose of flushing out any dangling application
messages that were sent before the recovery started. After
a process exits the above procedure, it will replay the log
starting from the local checkpoint until the state interval
index computed by the previous algorithm is reached. Any
messages generated during this procedure will be sent to
the respective destination processes. It will also purge the
old log beyond the state interval index as computed above.
Duplicate messages are handled as in the case of the algo-
rithm in Section 4.

In order to update checkpoints, commit output messages
(that is, enabling the output actions associated with the out-
puts), and compact the log, we use the following procedure.
As in the case of the algorithm in section 4, output mes-
sages are held in a queue until they are sent out. The
processes periodically execute the algorithm to compute the
maximum consistent global state. Let ml, . . . ,mn be the
state interval indices computed by the algorithm of Section
5.1. Now each process p can commit all outputs that were
generated before or during the state interval mp, because
process p knows that it cannot roll back to a position before
mp. It will be tempting to conclude that the local check-
points of the process p can be updated to mp However,
this can create a problem for the following reason: Sup-
pose process p generated a message for process q before
p’s mp-th state interval, and this message was not delivered
to App’(q) before q’s mq-th state interval. Although
process p will never roll back to a point below mp, it still
needs to keep some of the messages below m

P in order to
regenerate messages of the above kind during possible fu-
ture recovery.

Let kp be the maximum state interval index of process p
below mp, such that, for all q #p, all messages generated by
p for process q before kp are delivered before mq. Now
process p can compact all logged messages below kp and

install a new checkpoint at kp. In order to compute the
values of kp, the processes exchange another round of mes-
sages after computing the maximum consistent global state.
In this round, each process q, for all p #q, finds the most
recent message fromp that is in the log of q below m

4 and
sends to p the state interval index of p on which this mes-
sage directly depends. Using these state interval indices,
process p can determine the value of kp, and advance the
checkpoint to kp, and get rid of logged messages below kp

The above recovery procedure will work properly as
long as there are no further failures during the recovery
procedure.

6. Extensions

6.1. Networks
In the algorithms presented in sections 4 and 5, each of

the processes sends messages to each of the other
processes. This may not be a desirable if the number of
processes is large and the communication network is not
fully connected. We show, below, how the second algo-
rithm can be modified so that each of the recovery
processes only communicates with its neighbors on the net-
work.

The key part of the second algorithm is the procedure to
compute the maximum consistent global state. We present
a different implementation of the algorithm given in Sec-
tion 5.1. Each process maintains a local variable L. The
algorithm is initiated by some process by sending an
initiate message to all of its neighbors. After receiving the
first initiate message, a process sends initiate messages to
all its neighbors; any subsequent initiate messages will be
ignored by the process. After sending initiate messages to
all its neighbors, a process sets L to the maximum state
interval index up to which it has logged messages, and then
it sends a recovery message with the value of L to all its
neighbors. After this, each process repeats the following
procedure.

1. wait and receive a recovery
message from any of the neighbors;

2. if the message received in step 1 is from process q
and contains value m
and a message from q, generated in a state interval with

235

index greater than m has been logged then
set r to the index of the earliest such message,
if r<L then

SetLtor
send a recovery message with value L

to all the neighbors
endif

endif

A global state in which no recovery messages are being
processed at any node and no recovery messages are wait-
ing to be processed either in the channels or at tbe nodes, is
called a quiescent state. It is easy to show that, during the
execution of the above algorithm, whenever the system of
processes reach a quiescent state then it remains in this
state forever. It is also not difficult to show that, after the
initiation of the above algorithm, the processes eventually
reach a quiescent state, and in this state, the values of the
variables L at the different nodes give the maximum consis-
tent global state. We say that the above algorithm has
terminated at an instance of its execution if the global state
at this instance is a quiescent state. Termination of the
above algorithm can be detected using the algorithms of
[CM]. After the termination is detected, each of the
processes will be notified and they will continue with the
remainder of the computation.

As pointed out earlier, the above algorithm for finding
the maximum consistent global state can be used to tind the
global state to which processes roll back after a recovery; it
can also be used periodically for committing outputs to the
external world.

6.2. Committing Outputs
The model of the reliable system assumes that outputs

are buffered before they are sent out. However, another
possibility is to assume that outputs are immediately sent to
the environment without buffering in the reliable system.
In this case, the methods for committing outputs presented
in the previous algorithms is inadequate for the following
reason. The order in which outputs occur at different nodes
in the new model is consistent with the transitive depen-
dency relation. This is not true in the old model, because
the outputs are buffered and released independently. To
commit outputs correctly in the new model, a node must
only commit an output after it has been informed that all
outputs generated in the state intervals on which the current

state interval transitively depends have occurred.
The following simpler algorithm for committing outputs

works whether outputs are buffered or not. Whenever a
state interval is committed then the outputs generated in the
state interval are committed. ln this protocol, the processes
use a special type of messages called committed messaga
Process p commits the state interval s if the following con-
ditions are satisfied p has logged the message m that in-
itiated the state interval s; if m is generated by process q in
its state interval I then p has already received a committed
message from 4 with argument value r; and p has already
committed the state interval s-l. Immediately at& com-
mitting the state interval S, p sends out all the outputs to the

external world that were generated during the state interval
S, and simultaneously writes the index of s into a location
called mux-committed-stute in stable storage so that it will
not resend the outputs of s again after a failure. Then it
sends committed messages with argument value s to all its
neighbors.

It can easily be shown that whenever the above proce-
dure commits the outputs generated during a state interval,
that state interval will never be rolled back. The advantage
of this approach over the one used in Section 5 is that the
processes do not need to compute the maximum consistent
global state in order to commit outputs. The disadvantage
of this method is that it may take longer to commit outputs
than in the case of the previous algorithms; also, the num-
ber of messages used are proportional to the number of
messages sent during the actual execution of the applica-
tion processes.

It is also not difficult to see that the maximum com-
mitted state intervals at any instance form a consistent
global state. We can use these committed state intervals for
the purpose of recovery also. Whenever a process restarts
after a failure, it recovers to the state given by the variable
max-committed-state and sends initiate messages to all the
other processes; after receiving the initiate message, each
of the other processes recovers to the state given by the
max-committed-state. The disadvantage of this recovery
method is that the processes may not recover to the max-
imum consistent global state.

236

6.3. Decomposing Large Networks
One of the disadvantages of using all the previous ap-

proaches to large networks is the following. All these
methods may cause a node far removed from the failed
node to be rolled back. This may be undesirable and can be
avoided using the following approach.

Consider a network N and let P,Q be a partition of the
nodes such that the graph of N restricted to each of P,Q is

connected. We want to prevent a roll back of an execution
of a process in Q due to a failure of a node in P, and vice
versa. To achieve this, we use independent recovery al-
gorithms for nodes in P and Q. For each link @,q), where p
is in P and q is in Q, the recovery algorithm for the nodes
in P treats all messages sent on this link as outputs to the
environment, that is, it sends these messages only when it
has made sure that the state interval generating the mes-
sages will never be rolled back. The recovery procedure
for Q treats messages on the link @,q) as inputs from the
environment, that is, the recovery process at node q logs an
input message fromp immediately after its arrival and then
releases it to the local application process. If the node q

fails and restarts, then after the restart, it queries node p for
any messages that were sent during the failure period, such
messages can be regenerated by p using its log. Also, in
order to compact the log at node p, process q may periodi-

cally need to send to p the sequence number up to which q

has logged the incoming messages from p.

It is easy to see that if the above approach is used, then
any failure among the nodes in P will not cause a roll back
of any computation at a node in Q, and vice versa. The
recovery procedures used for P and Q can be entirely dif-
ferent. Also, if we use the recovery methods given in this
paper, then the whole network will be able to function
properly even if there are simultaneous failures of a node in
PandofanodeinQ.

The above approach can be used with respect to any
partition (PlQ2.. . 9,) of the network as long as the
graph of the network restricted to each Pi is connected. The
partition can be conveniently chosen. For example, if the
network is composed of various local area networks con-
nected by gateways then the nodes can be partitioned so
that all nodes belonging to the same local area network
form one group of the partition.

The disadvantage of this approach is that it may slow
down the application computation because messages on
links connecting nodes in different groups of the partition
must be logged before they are delivered to the application
processes. This is the price we pay for shielding the
processes in one group of the partition from failures in a
different group.

Acknowledgment
We thank Hagit Attiya for stimulating discussions about

the contents of this paper.

References
[BBG] Anita Borg, Jim Baumbach, and Sam Glazer, ‘A

Message System Supporting Fault Tolerance,” Proceedings

of the Ninth ACM Symposium on Operating Systems

Principles, Gctober 1983, pp. 90 - 99.
[CL] K. Mani Chandy and Leslie Lamport, “Distributed

Snapshots: Determining Global States of Distributed Sys-
tems,” ACM Transactions on Computer Systems, vol. 3,
no. 1, February 1985, pp. 63 - 75.

[CM] K. Mani Chandy and Jayadev Misra, “A Paradigm
for Detecting Quiescent Properties in Distributed Computa-
tions,” TR-85-02, Department of Computer Sciences, The
University of Texas at Austin, January 1985.

[Jz] David B. Johnson and Willy Zwaenepoel,
‘Recovery in Distributed Systems Using Asynchronous
Message Logging and Checkpointing,” Proceedings of the

Seventh Annual ACM Symposium on Principles of Dis-

tributed Computing, August 1988, pp. 171 - 181.
[KT] Richard Koo and Sam Toueg, “Checkpointing and

Rollback-Recovery for Distributed Systems,” IEEE Trans-

actions on Software Engineering, vol. SE-l 3, no. 1,
January 1987, pp. 23 -3 1.

[L] Leslie Lamport, ‘Time, Clocks, and the Ordering of
Events in a Distributed System,” Communications of the

ACM, vol. 22, no. 7, July 1978, pp. 558 - 564.
[LT] Nancy A. Lynch and Mark R. Tuttle, “Hierarchical

Correctness Proofs for Distributed Algorithms,”
Proceedings of the Sixth ACM Symposium on Principles of

Distributed Computing, August 1987, pp. 137 - 151. Also
available as MIT Laboratory for Computer Science Tcch-
nical Report MIT/LCS/TR-387, April 1987.

[PPI Michael L. Powell and David L. Presotto, ‘Publish-
ing: A Reliable Broadcast Communication Mechanism,”

237

Proceedings of the Ninth ACM Symposium on Operating

System Principles, October 1983, pp. 100 - 109.
[SY] Robert E. Strom and Shaula Yemiui, “Optimistic

Recovery in Distributed Systems,” ACM Transactions on
Computer Systems. vol. 3, no. 3, August 1985, pp. 204 -
226.

Appendix
In this Appendix, we review the aspects of the model

from [LT] that are relevant to this paper.
An input-output automaton A is defined by the following

components. (1) There is a (possibly infinite) set of states
with a subset of start states. (2) There is a set of actions,
partitioned into input, output, and internal actions. The
input and output actions are the external actions of A,
denoted ext(A). (3) The transition relation is a set of (state,
action, state) triples, such that for any state s’ and input
action n, there is a transition (S’JZJ) for some state s. (In-
put actions are presumed to originate in the automaton’s
environment: consequently the automaton must be able to
react to them no matter what state it is in. > Action x is
enabZed in state s’ if there is a transition (r’,rr,r) for some
state s.

An execution e of A is a finite or infinite sequence
s()qs1 . . . of alternating states and actions such that SO is
a start state, (Si-lPi~i) is a transition of A for all i, and if e
is finite then e ends with a state. The schedule of an execu-
tion e is the subsequmce of actions appearing in e.

Let A be an automaton and P be a predicate on se-
quences of actions of A. A preserves P if for every
schedule &J of A such that P is true of fl and a is a locally-
controlled action of A, then P is also true of pa.

Automata can be composed to form another automaton.
Automata to be composed must have no output actions in
common, and the internal actions of each must be disjoint
from all the actions of the others. A state of the composite
automaton is a tuple of states, one for each component. A
start state of the composition has a start state in each com-
ponent of the state. Any output action of a component
becomes an output action of the composition, and similarly
for an internal action. An input action of the composition
is an action that is input for every component for which it is
an action. In a transition of the composition on action 7r,
each component of the state changes as it would in the

238

component automaton if R occurred; if n is not an action of
some component automaton, then the corresponding state
component does not change.

Given an automaton A and a subset II of its actions, we
can hide the actions in II to form an automaton differing
from A only in that each action in II becomes an internal
action. This operation is useful for hiding actions that
model interprocess communication in a composite
automaton, so that they are no longer visible to the environ-
ment of the composition.

Execution e of automaton A is fair if for each locally-
controlled action r~, the following two conditions hold. (1)
If e is finite, then n is not enabled in the final state of e. (2)
If e is infinite, then either ‘IE appears infinitely often in e, or
states in which n is not enabled appear infinitely often in e.

Rec’A~.rn.~)
-

-

Mpm)

