
Efficient Distributed Recovery Using Message Logging 

A. Prasad Sistla and Jennifer L. Welch 

GTE Laboratories Incorporated 

Absfrucf: Various distributed algorithms am presented, 
that allow nodes in a distributed system to recover from 
crash failures efficiently. The algorithms are independent 
of the application programs running on the nodes. The 
algorithms log messages and checkpoint states of the 
processes to stable storage at each node. Both logging of 
messages and checkpointing of process states can be done 
asynchronously with the execution of the application. 
Upon restarting after a failure, a node initiates a procedure 
in which the nodes use the logs and checkpoints on stable 
storage to roll back to earlier local states, such that the 
resulting global state is maximal and consistent. The first 
algorithm requires adding extra information of size O(n) to 
each application message (where n is the number of nodes); 
for each failure, O(n2) messages are exchanged, but no 
node rolls back more than once. The second algorithm 
only requires extra information of size O(1) on each ap- 
plication message, but requires O(n3) messages per failure. 
Both the above algorithms require that each process should 
be able to send messages to each of the other processes. We 
also present algorithms for recovery on networks, in which 
each process only communicates with its neighbors. 
Finally, we show how to decompose large networks into 
smaller networks so that each of the smaller network can 
use a different recovery procedure. 
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1. Introduction 
Distributed computer systems offer the potential ad- 

vantages of increased availability and reliability over 
centralized systems. In order to realize these advantages, 
we must develop recovery procedures to cope with node 
failures. For this, the recovery procedures must ensure that 
the external behavior of the system is unaffected by the 
failures, that is, that the external behavior of the failure 
prone system is same as that of a failure free system. 
Achieving this goal is complicated by the fact that a node 
failure causes a process to lose the contents of its volatile 
store and hence its state. 

In this paper, we give a precise definition of the recovery 
problem using the I/O automaton model and present several 
algorithms to solve this problem. The outline of a formal 
proof of one of the algorithms is included. 

Like many of the standard recovery procedures in the 
literature, we use the following two techniques: whenever a 
node restarts after a failure, each of the processes at the 
different nodes is rolled back to an earlier state using stable 
sroruge, so that the resulting global state is consistent; the 
external outputs generated by the processes are delayed un- 
til it is made sure that the states of processes that generated 
the outputs will never be rolled back. Roughly speaking, in 
a consistent global state, if the state of one process reflects 
the receipt of a message from another process, then the 
state of the sender process reflects the sending of the mes- 
sage. In order to minimize the roil back for efficiency 
consideration, the restored global state should be as recent 
as possible. 

There are two approaches for achieving a consistent 
global state after a failure. One approach is to ensure that 
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at all times, nodes keep checkpoints (i.e., previous states) in 
stable storage that are consistent with each other. To obtain 
the checkpoints, nodes must periodically cooperate in com- 
puting a consistent global checkpoint [CL, KT]. Some 
methods using this approach require suspending the ap- 
plicatian computation while the checkpoint computation is 
performed, which is not always feasible in all applications. 
Also, the more infrequently the checkpoint computation is 
done, the more out-of-date the checkpoints will be, and 
thus more work will be lost following a failure. 

In the second approach, nodes log incoming messages to 
stable storage, and after a failure, use these message logs to 
compute a consistent global state. Algorithms that take this 
approach can be further classified into those that use pes- 
simistic and those that use optimistic message logging. 

In pessimistic (or synchronous) message logging, every 
message received is logged to stable storage before it is 
processed [BBG, PP]. Thus the stable information across 
nodes is always consistent. However, this method slows 
down every step of the application computation, because of 
the synchronization needed between logging and process- 
ing of incoming messages. 

In optimistic (or asynchronous) message logging, mes- 
sages received by a node are logged in stable storage 
asynchronously from processing [SY,JZ]. In this case, log- 
ging can lag behind processing. Failure-free computation 
is not disturbed, but some extra work must be done upon 
recovery to make sure that the restored states are consis- 
tent. In [JZ], the authors prove that in such schemes, there 
is a unique maximal consistent global state that can be 
recovered from stable storage. Obviously, one would like 
to recover to this state, in order to undo the minimal 
amount of the computation performed before the crash. 

We present several distributed algorithms, based on 
asynchronous message logging, that allow nodes to recover 
to the maximal consistent global state after a failure. This 
causes a minimal amount of the previous computation to be 
undone. Our algorithms am correct as long as no further 
failures occur during the recovery procedure. 

The first algorithm requires adding extra information of 
size O(n) to each application message (where n is the num- 
ber of nodes); for each failure, O(n2) messages are ex- 
changed, but no node rolls back more than once. The 

second algorithm only requires extra information of size 
O(1) on each application message, but requires O(n3) mes- 
sages per failure. The first two algorithms assume the com- 
munication network is fully connected. Our third algorithm 
works in any communication network and only requires 
processes to communicate with their neighbors. Finally we 
discuss how to decompose large networks into smaller net- 
works that can use independent recovery procedures. 

Other recovery methods based on asynchronous message 
logging are presented in [SY] and [JZ]. Although our first 
algorithm is similar to that in [SY], the one presented in 
[SY] can, in the worst case, cause a process to roll back 
O(2’) times, and thus generate an exponential number of 
messages, in response to a single failure. The algorithm in 
[JZ] is a centralized one; we believe distributed algorithms, 
such as ours, are more suited to the nature of this problem 

In Section 2, we give a precise description of the 
problem Section 3 contains some definitions about consis- 
tent state intervals and message logging. In Section 4, we 
present the first algorithm together with the proof of cor- 
rectness. In Section 5, we present our second algorithm. 
Section 6, discusses extensions to our work for arbitrary 
networks. The Appendix is a summary of the I/O 
automaton model [LT], which we use for our formal treat- 
ment. 

2. Problem Statement 
We consider a system of n nodes that communicate with 

each other and with the outside world through messages. 
Between each ordered pair of distinct nodes there is a mes- 
sage channel. The channel delivers messages from one 
node to the other in the order in which the messages were 
sent; it does not lose, duplicate or insert messages; each of 
the messages is delivered after an arbitrary finite delay. 
We model an arbitrary distributed application program as a 
set of application processes running on the various nodes. 
The application processes communicate by sending mes- 
sages. Upon receiving a message, an application process 
can change its local state in an arbitrary way, as long as it is 
deterministic, and send messages to the outside world and 
to other application processes. 

In order to define the recovery problem, we consider two 
systems: an ideal system in which failures do not occur, 
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which we call the reliable system or RSys; and the actual 
system in which failures can occur, which we caI1 the 
failure-prone system or FSys. 

In a reliable system, each node runs an application 
process together with a bu@er process. The buffer process 
buffers all the incoming messages and delivers them to the 
application process; it also buffers all the messages 
generated by the application process and sends them to 
their destinations, which can be other nodes or the external 
world. 

In a failure-prone system, each node funs an application 
process and a recovery process. Each of the nodes can 
crash and then restart. The problem is to design algorithms 
for the recovery processes so that failure-prone system be- 
haves like the reliable system, as far as the external world 
is concerned -- that is, for the set of interactions between 
the failure-prone system and the outside world to be a sub- 
set of the set of interactions between the reliable system 
and the outside world. 

The recovery processes can use stable storage, storage 
that is unaffected by failures. In more detail, each node’s 
local state is partitioned into volatile and stable state. After 
a node crashes, the node’s volatile state is initialized, but 
the stable state is unchanged. We assume for simplicity of 
presentation that the application process only accesses 
volatile state. The recovery process acts as a layer around 
the application process, and filters aII messages going into 
and coming out of the application process. Messages 
originating in the application process are called application 

messages, and messages originating in the recovery process 
are called recovery messages. Both kinds of messages use 
the same channels. 

The rest of this section formalizes these notions using 
I/O automata. A brief introduction to I/O automata is given 
in the appendix. We present each of the components of the 
system as an I/O automaton. Through out the paper, we use 
the following definition of fairness of an execution, An 
execution is fair, if whenever an action is enabled in a state 
of the execution then eventually the action either occurs or 
gets disabled in the execution. 

For any two nodes p and q, the automaton Channel@,q) 
is defined as follows. Let M be the set of all messages. 
Intuitively, the state of the automaton is given by a queue 
which the sequence of messages sent by node p to node q 

that ate not yet received by q. The set of input actions to 
channel(p,q) consist of actions of the form Send@,m,q), for 
alI m in M. The effect of the action Send@,m,q) is to add 
the message to the queue of messages to be sent. The set of 
output actions consist of actions of the form l&xv(qJn,p), 

for all m in M. The action Recv(q,m,p) is only enabled in 
those states in which the message m is at the head of the 
queue; the effect of this action is to remove m from the 
head of the queue. 
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A reliable node p is modeled by a pair of automata, one 
buffering the incoming and outgoing messages, and the 
other representing an arbitrary application process (See 
Figure 2-2). Messages from the outside world and mes- 
sages from other nodes arrive asynchronously. The buffer 
automaton stores them in queues and feeds them one-at-a- 
time to the application process upon request, implementing 
a nondeterministic merge of all the incoming queues. The 
buffer automaton and the automaton modeling the applica- 
tion process at node p are denoted by Bu#Ip) and App@) 

respectively. B@(p) delivers an input to App@) using an 
action of the form Deliver@,m,q). The .automaton App@) 

after processing an input communicates with Bujj@) using 
an output action of the form SendOut@,M) where M is an 
n+l array and M[q] contains the value of the message to be 
sent to q. The outputs sent by App@) using an action of the 
form SendOut( are buffered by &&7p) before they are 
sent to their destinations. 

Let ME be the set of ail messages used for communica- 
tion between the environment and the nodes, and let MA be 

2.1. Reliable System 
We assume that the system consists of a set P of n 

nodes. For every ordered pair @,q) of distinct nodes, there 
is a channel from p to q (See Figure 2-l). The channel 
from p to q provides FIFO delivery of every message sent 
from p to q without losing or duplicating or inserting mes- 
sages. There is no fixed upper bound on the delay between 
the sending and receipt of a message. Nodes also com- 
municate with the outside world, or environment, directly 
through messages. Let P’=Pu{env}. 



the set of all messages used for communication between the 
application processes. 

The state of Bz@.p) is composed of the following vari- 
ables. For all q (but p) in P’ there is a queue inq[q] con- 

taining all undelivered messages received from q, and there 
is a queue outq[q] that contains all unsent messages to q. 

All these queues are initially empty. The state also contains 
a boolean variable ready which is initially false. This vari- 
able is used to make the Deliver and SendOut actions alter- 
nate. 

The input actions of Bum) are the following: In@&, 
for all rn in ME; Recv(p,m,q), for all m in MA and all q (but 
p) in P; and SendOut@,M), for all arrays M such that for all 
i<n, M[i] is in MA and M[n+l], which we denote by 
M[env], is in ME. The effect of In@,& is to add m to 
inqlenv]. The effect of Recv@,m,q) is to add m to inq[q]. 

The effect of SendOut@,M) is to set ready to true and add 
M[ql to outq[ql for all q (butp) in P’. 

The output actions of Bu.) are’ the following: 
Deliver@,m,q), for all m in MAuME and all q (but p) in P’; 

Send@,m,q), for all m in MA and all q (but p) in P; 
Out@,m), for all m in ME The action Deliver@,m,q) is 
enabled only when m is at the head inq[q] and reudy=true; 
its effect is to remove m from inq[q] and set reudy to false. 
The action Send@,m,q) is enabled when m is at me head of 
outq[q], and its effect is to remove m from outq[q]. The 
action Out@,m) is enabled when m is at the head of 
outq[env], and its effect is to remove m from this queue. 

The automaton App@) represents an arbitrary applica- 
tion process which is deterministic and which satisfies the 
following conditions. 

(1) The input actions of App@) are Deliver@,m,q), for 
all m in MAWME and all q (but p) in P’; the output actions 
of App@) are SendOut@,M) for all message arrays M from 

P* 
(2) App@) must preserve well-formedness for p -- a se- 

quence of actions o of App@) is defined to be well-formed 

for-p if o is a prefix of the infinite sequence (SendOut@,.) 
Deliver@,.,.))“. (See Appendix for definition of 
“preserve”.) 

Let RSys be the automaton modeling the reliable system, 
obtained by composing Buff@), App@), and Channel@,q) 
for all p and q in P, and then hiding all actions except 

In@,m) and Out(p,m) for all p in P and all m in ME. (See 

Appendix for definition of “hide”.) 
It is easy to see that Buff@) preserves well-formeduess 

for p, for all p in P, and every schedule of RSys is well- 
formed for p, for all p in P. 

2.2. Failure-Prone System 
Now we consider failures. We assume that nodes can 

crash but that channels are reliable. 
To model a failure-prone node, we replace the 

automaton Buff@) with another automaton Recov@), 
representing the recovery process. Recov@) acts as a filter 
or layer around App@)(See Figure 2-3). 

We must make the following changes to App@), result- 
ing in an automaton named App’@). We add more input 
actions: Crash/Restart(p), which initializes its state, and 
Restore@,.s) for all states s of App@), which restores its 
state to that specified by s. The state sets of App@) and 
App’@) are the same. 

Recov@) must satisfy the following conditions. Let MR 
be the set of all messages used for communication between 
the recovery processes. 

(1) The input actions of Recov@) are In@,m) for all m in 
ME, Recv@,m,q) for all m in MR and all q (but p) in P, 

SendOut@,M) for all messages arrays M from p, and 
Crash/Restart(p). The output actions of Recov@) are 
Send@,nz,q) for all m in MR and all q (but p) in P, Out@,@ 
for all m in M,J+ and Deliver@,m,q) for all m in MAWME 

and all q (butp) in P’. 

(2) The state of Recov@) is partitioned into volatile and 
stable. The effect of the Crash/Restart@) action is to set 
the volatile part to its initial value and to leave the stable 
part unchanged. 

(3) Let FSys be the automaton modeling the failnre- 
prone system, obtained by composing Recov@), App’@), 
and Channel@,q) for all p and q in P, and then hiding all 
actions except In@,m) and Out(p,m) for all p in P and all m 

in ME We require that for any fair execution e of FSys in 
which at most one Crash/Restart action occurs, there is a 
fair execution f of RSys such that ejext(RSys) =Aext(RSys). 
Thus, the two executions have the same external behavior. 
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3. State Intervals and Consistency 
Given any execution e of RSys, we make the following 

definitions relative to e. 
For each p in P, divide e into state intervals: a new state 

interval begins with each Deliver@,.,.) action. State inter- 
vals are numbered sequentially starting at 0; the number, or 
index, of a state interval s is denoted index(s). Suppose 
state interval s contains Deliver@,m,q) and SendOut@,M). 
Then m is said to start s and all the messages in M are said 
to be generated in s. 

We defme a binary relation directly depends on among 
state intervals of e. Let s and t be state intervals of p and q 

in e. 

l If p=q and index(s)2 in&x(t), then s directly depends on 
1. 

l Ifp f q and s is started by a message generated in t, then s 
directly depends on t. 

We define a binary relation transitively depends on 

among state intervals of e to be the transitive closure of 
Virectly depends on”. This is the same as the partial order 
“happens before” of Lamport [La]. 

A global state of execution e is an n-vector (il, . . . ,i,) 

such that for all p, ip is the index of a state interval of p in 
e. (This is a slight abuse of notation, because the elements 
of a global state are not local states but are indices; also 
note that there is no requirement that the collection of state 
intervals corresponding to the indices be a collection that 
could all occur at the same time in the execution.) 

We define a global sfate (iI, . , . ,i,) to be consistent in 
execution e if for all p, each message delivered to App(p) 
by the start of p’s $-th state interval is generated by some q 

during or before q’s iq-tb state interval. It follows easily 
that global state (iI, . . . ,i,) is consistent in e if for all p and 
q in P, p’s ip-th state interval does not transitively depend 
on any state interval of q with index > i 

9’ 
We define a partial order 5 between global states of 

execution e as follows. Let S=(i,, . . I ,i,) and 
T=o’p . . . jn) be global states of e. We define S< T if and 
only if ip 5jp for all p. In this case, S is said to be below T. 

The following lemma is from [JZ]. 
Lemma 1: Fix an execution &of RSys. 
(1) All the global states of e form a lattice with respect to 

the partial order 5. 
(2) For a fixed global state R of e, all the consistent 

global states of e below R form a lattice with respect to 5. 

(3) There is a maximum (with respect to 5) consistent 
global state of e below any fixed global state R of e. 

The next definition and lemma are the key to the correct- 
ness of our methods of finding the maximum consistent 
global state. Let S=(il, , . . , in) be a global state of execu- 
tion e. Define max-below(S)=(jl, . . . &) as follows. For 
all p, let jP be the maximum integer 5 ip such that, for all q, 

p’s jP-th state interval does not transitively depend on the 
(i 4 +l)-st state interval of q. 

Lemma 2: For any global state S of execution e, 
max-below(S) is the maximum consistent global state 
below s. 

4. Algorithm With Transitive Dependencies 
In this section we describe our first algorithm. Recovery 

processes maintain transitive dependencies between state 
intervals of their corresponding application processes, 
which enables them after a failure, to find the maximum 
consistent global state (below the most recent logged state 
intervals at the time the processes begin the recovery). A 
tag of size O(n) is added to each application message. 
After a failure, only O(n2) recovery messages need to be 
exchanged, and each application process only needs to roll 
back once, in order to return the system to the maximum 
consistent global state. 

In Subsection 4.1, we describe the algorithm informally. 
This version actually does not include checkpointing. Sub- 
section 4.2 contains the formal description of the algorithm 
and Subsection 4.3 the proof of correctness. We describe 
our checkpointing mechanism in Subsection 4.4 and dis- 
cuss an optimization using volatile storage in Subsection 
4.5. 

4.1. Norma1 Operation 
Recov@) keeps in volatile storage n queues of incoming 

messages waiting to be delivered to the application process, 
one queue for the environment and one for every node 
other than p. When Recov@) receives an input from the 
environment (cf. the In action) or a message from another 
node (cf. the &Xv action for au application message), it 
adds the message to the end of the appropriate queue. 

Recovery processes maintain the transitive dependencies 
between state intervals of their corresponding applicatiou 
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processes in the following way. Each recovery process p 

keeps an n-vector TDp; intuitively, TD[p] is the index of 
p’s current application state interval, and ZD[q], q#p, is 
the highest index of any state interval of q’s application 
process on which p’s current application state interval tran- 
sitively depends. Initially ZZJ@] is 0 and the other ele- 
ments are -1. All application messages generated by p are 

tagged with the current value of TD. Upon receiving an 
application message with tag V, p increments TDlp] by l,, 
and sets TD[q], q;tp. to the maximum of TD[q] and V[q]. 

(The same technique for maintaining transitive depen- 
dencies is used in [SY].) 

We now describe the interaction between the recovery 
process aud the application process. Once the application 
process has indicated that it is ready to accept another mes- 
sage (cf. the SendOut action), Recov@) can deliver to the 
application process the fast message, minus its tag, from 
one of the queues of incoming messages (cf. the Deliver 
action when starus is normal). Then Recov@) updates its 
transitive dependency vector and the volatile log recording 
the order in which messages arc delivered. The application 
process then computes, based on the message just delivered 
to it, and eventually performs a SendOut action. When a 
SendOut occurs, Recov@) tags each message with the cur- 
rent value of the transitive dependency vector and puts it in 
a queue of outgoing messages for that recipient. The mes- 
sage at the head of an outgoing queue, for any recipient 
except the environment, is always enabled for sendiug (cf. 
the Send action). 

No output directed to the environment should occur until 
it is guaranteed that the state interval that generated this 
output (and thus the output itself) will never be rolled back. 
Extra mechanism is needed to ensure this condition. 
Recov@) keeps an array N (N for “notified”); N[q] is the 
maximum state interval of q that p has heard is logged in 
q’s stable storage. Nodes periodically communicate their 
maximum logged state interval in Notify messages (cf. the 
Notify action and the Recv action for a Notify message). 
An Out action can occur once the message is at the head of 
the output queue and the generating state interval only tran- 
sitively depends on other state intervals known to be 
logged. 

In order to recover from crashes, which initialize volatile 

storage, recovery processes make use of stable storage. . 
Periodically, Recov@) writes the volatile log of delivered 
messages to a log on stable storage (cf. the Log action). 
The logging is not synchronized with the receipt or sending 
of application messages or with the delivery of messages to 
the application process. In order to avoid losing inputs 
from the environment, Recov@) immediately writes each 
input to another log on stable storage when an In action 
occurs; a counter is used to keep track of how many inputs 
have occurred in order to identify the entries in this log. 
Similarly, in order to avoid duplicating outputs to the en- 
vironment, Recov@) immediately writes an indication that 
an output has occurred to stable storage (in the form of 
S-East-out). (Compacting of these stable logs is discussed 
in Section 4.4.) 

4.2. Handling a Failure 
We model a crash followed by a restart as a single ac- 

tion, Crash/Restart. When a node crashes and restarts, its 
volatile state is initialized. Then its status is set to 
9ecovering” and it sends an Init message to all other nodes 
with the value of the index of the maximum state interval 
obtainable from the stable log. Upon receiving au Init mes- 
sage (cf. the Recv action for an Init message), a process 
broadcasts the index of its latest logged message in a Relay 
message, changes its status to recovering, and empties all 
input and output queues as well as the volatile log. 
Recov@) collects the values sent in Init aud Relay mes- 
sages into an array L. Once p has received recovery mes- 
sages from all the processes (so that L is completely filled 
in), the Restore action is enabled. 

After Restore occurs, the application process’ state is set 
to the chcckpointed state from stable storage and 
Recov@)‘s status changes to “replaying” (or back to nor- 
mal if the stable log is empty). Then Recov@) feeds suc- 
cessive messages to the application process as before, but 
the messages are drawn from the stable log instead of the 
volatile incoming queues (cf. the Deliver action when 
status is replaying). This replaying continues until the end 
of the stable log or just before reaching a message that is an 
“orphan” with respect to L. A message with transitive 
dependency vector V is an orphan with respect to L if 

V[q] >L[q] for some q, i.e., the message was generated in a 
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state interval that transitively depends on an unlogged state 
interval. Then the rest of the stable log is discarded, the 
status is returned to normal, and all the inputs that either 
were lost from the environment’s volatile incoming queue 
before being delivered or may have accumulated during the 
recovery/replay procedure are added to the end of the 
environment’s incoming queue. 

The In action always adds the input to the stable input 
log, but only adds the input to the environment’s (volatile) 
queue of incoming messages if the node’s status is normal. 
If the node’s status is not normal, then the inputs are col- 
lected in the stable log and are added to the end of the 
volatile queue when replay is complete (as discussed 
above). 

During replay, the application process will generate 
duplicates of messages and outputs that it generated before 
the recovery. Duplicate outputs, i.e., outputs that have al- 
ready occurred, can be detected by comparing the index of 
the generating state interval with the variable S-lust-out; 

duplicates are simply discarded while non-duplicates are 
added to the outgoing queue. Duplicate messages to other 
nodes are simply sent on by the recovery process. The 
recipient’s recovery process filters out the duplicates at the 
point when it is choosing the next message to deliver as 
follows (cf. the Deliver action when status is normal). 
Each recovery process keeps a vector of direct depen- 
dencies, LID, which is updated whenever a message is 
delivered to the application process. Any message from q 

to p whose generating state interval index is not greater 
than DD[q] at p is a duplicate and is discarded by p. 

Any application message that is received during the 
recovery/replay procedure is added to the end of the ap- 
propriate incoming queue for later processing, unless the 
recipient is waiting to receive a Relay message from the 
sender (in which case the message is discarded). 

4.3. Formal Description 
We now describe the automaton Recov@). 

STATE: 

Volatile: 
DD [q] for all q (but p in P: maximum state interval of q 
on which p’s current state interval directly depends, used 
to filter duplicate messages; 

initially - 1 
inq[q] for all q (but p) in P’: FIFO queue of messages re- 
ceived from q and not yet delivered; initially empty 

L[q] for all q in P: maximum state interval of q that is 
logged, used in recovery; initially 0 

log: FIFO queue of messages delivered to application 
process; initially empty 

N[q] for all q in P: maximum state interval of q that is 
known top to be logged, used to commit outputs; 
initially 0 

rum-in-delivered: number of inputs (from environment) 
delivered to application process; initially 0 

outq[q] for all q (but p) in P’: FIFO queue of messages 
fromp to q waiting to be sent; initially empty 

ready: boolean controlling when to deliver next 
message; initially false 

restore: boolean controlling when to restoR appli- 
cation state; initially false 

TD[q] for all q in P: maximum state interval of q on 
which p’s current state intervaI transitively depends; 
initially T.lp]=O and rest are -1 

status: normal, recovering, replaying; initially normal 

Stable: 
S-chkpt: checkpointed state of application process; 
initially the start state of App@) 

S-DO: value of DD associated with state in S-chkpt; 
initially -1 

S-inputs: FIFO queue of inputs from environment that 
have occurred so far; initially empty 

S-lust-out: index of state interval of last output that 
occurred; initially nil 

SJog: FIFO queue of messages delivered to appli- 
cation process; initially empty 

S-num-in: number of inputs that have occurred so far; 
initially 0 

S-num-in-delivered: number of inputs processed by 
checkpointed state interval; initially 0 

S-TD: value of TD associated with state in S-chkpt; 
initially S_TD@]=O and rest are -1 

Define the derived variable 1ast~Zogged~inde~ to be 
SFTD[pJ plus the number of entries in S-log. 

INPUT ACTIONS: 

SendOut@&) for all message arrays M for p 
efi if status = normal then 

ready := true 
add (M[q],TD) to end of outq[q] for all q (but p) 

in P’ with M[q] not empty 
endif 
if (sfatus = replaying) then 

ready := true 
add (M[q],TD) to end of outq[q] for all q (but p) 

in P with M[q] not empty 
if M[env] not empty and TD[p] > S-last-out then 

add (M[env],TD) to end of ourq[env] 
endif 
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if (no more messages in S-log) or 
(next message in S-log is an orphan 

with respect to L) then 
discard rest of S-jog 
add I to end of inq[env], where I is the suffix 

of S-inputs since num-in-delivered 
Nip] := lastJogged_index 
status := normal 

endif 
endif 

Xn@,m) for all m in ME 
effz S-num-in := S num-in+ 1 

add (m,S-numjn) to end of S-inputs 
if status = normal then 

add (m,S-num-in) to end of inq[env] 
endif 

Recv@,m,q) for all m in MR and all q (butp) in P 
eff: 
case m=(m’,V), m’ in MA: 

if status = normal or L[q] + nil then 
add m to end of inqlq] 

endif 
case m= Init( 

L[q] := 1 
Lip] := last-logged-index 
status := recovering 
N[r] := 0 for all I in P 
ready := false 
log := empty 
inq[r] : = empty for all r (but p) in P’ 
outq[r] := empty for all I (but p) in P 
if Lfr] # nil for all r in P then restore := true endif 
add Relay(L[p]) to end of outq[r] for all r (but p) in P 

case m = Relay(Z): 
L[q] := 1 
if status = recovering and 
L[r] # nil for all r in P then 

restore := true 
endif 

case m = Notify(Z): 
if status = normal or L[q] f nil then N[q] := 1 endif 

CraMRestart@) 
effr initialize volatile variables 

status : = recovering 
LIp] := last-logged-index 
add Iuit(L@]) to end of outq[q] for all q (butp) in P 

OUTPUT ACTIONS: 

Out@,m) for all m in ME 
pre: (m,V) is at head of outqlenv] 

V[q] _<N[q] for all q in P 
eff: remove (m,!J) from head of outq[env] 

S-Zast-out : = V[p] 

Send@,m,q) for all m in MA and all q (but p) in P 
pre: m is at head of outq[q] 
eff: remove m from head of outq[q] 

Deliver@,m,q) for all m in MAUME and all q (butp) in P’ 
pre: ready = true 

status = normal 
if q=env then 

(m,V) is at head of inq[env] 
else 

(m,V) is first entry in inq[q] with Vfq] >DD[q] 
endif 

eff: ready := false 
remove (m,V) and any skipped entries 

Tom head of inq[ql 
add (m,V,q) to end of log 
TD@] :=TDIp]+l 
if q=env then 

num-in-delivered := V 
else 

TD[r] := max(TD[r],v[r]) for all r (but p) in P 
Dm?l := ml 

endif 

Deliver@,m,q) for all m in MAwME and all q (butp) in P 
pre: ready = hue 

status = replaying 
(m,V,q) is next message in S-log 

eff: reudy := false 
TDIp]:=TDlp]+l 
if q=env then 

num-in-delivered := V 
else 

TD[r] := mw(TD[r],v[r]) for all r (but p) ia P 
~WII := w 

endif 

Restore@& for all states s of App’@) 
pre: restore = true 

s = s-chkpt 
eff: restore := false 

num-in-delivered := S-num-in-delivered 
I;[q] := nil for all q in P 
TD := SWTD 
DD := S-DD 
if (SJog is empty) or 
(first message in S-log is an orphan 

with respect to L) then 
status := normal 
discard rest of S-log 
add 1 to end of inq[env], where I is the suffix of 

S-inputs since num-in-delivered 
N[p] := last-logged-index 

else 
status := replaying 

endif 

INTERNAL ACTIONS: 
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W$P) 
pre: status = normal 

log+ empty 
effz log:= empty 

add log to end of SJog 
N@] := last-logged-index 

Notify@) 
pre: status = normal 
eff: add Notify(Nlp]) to end of outq[q] for all q (but p) 

in P 

4.4. Correctness 
The algorithm just presented is correct provided that no 

further failures occur while the system is recovering from a 
previous failure. For ease of notation, the proof in this 
section assumes that at most one crash occurs in the entire 
execution, but it can be extended in an obvious way to 
handle any finite number of failures (as long as no failures 
occur during the recovery procedure). In the full version of 
the paper, we will prove that the algorithm can handle an 
infinite number of failures; this will require a different no- 
tion of fairness. 

We must show that for every fair-execution e of FSys 
(with at most one Crash/Restart), there is a fair execution e’ 
of RSys such that e and e’ have the same sequence of 
external actions. It is important for e’ to be fair in order to 
rule out useless “solutions” in which no outputs am ever 
performed in the execution e. 

First we show that every execution e (fair or not) of 
FSys (with at most one Crash/Restart) can be mapped to an 
execution of RSys with the same external behavior. Then 
we show that if e is fair, its image under this mapping is 
also fair. 

We use the following method for proving that every ex- 
ecution e of FSys (with at most one Crash/Restart) can be 
mapped to an execution e’ of RSys with the same external 
behavior. Essentially e’ is the result of performing cut-and- 
paste operations on the original execution, deleting the part 
of each process’ computation that is rolled back after a 
failure. In order to define e’ precisely, we define two map- 
pings, S and A. Roughly speaking, S maps the state of FSys 
at a given position in e to a state of RSys and A maps the 
action of FSys at a given position in e to an action of RSys 
or to me empty string. We obtain a sequence of alternating 
states and actions of RSys by replacing each state and ac- 

tion in e with its image under S or A and “patching” the 
holes left when A is empty. To show that this sequence is 
the desired execution e’, we must show that the mappings S 
and A satisfy certain conditions. 

For the rest of this subsection, fix an execution 
e=S(plSl . . . of FSys in which at most one Crash/Restart 
occurs. Let length(e) be the number of actions in e (it 
could be infinite). 

It is easy to see that each node p executes as follows. 
First, p computes with normal status, exchanging applica- 
tion messages and Notify messages with other nodes, 
delivering messages to the application process, receiving 
inputs and generating outputs. At some point, p either 
experiences the Crash/Restart or receives an Init message 
from the node that crashed. Then p changes its status to 
recovering and sends Relay messages to the other nodes. 
Once p has received Relay or Init from all other processes, 
p restores the state of the application process to the check- 
point and replays the messages in the stable log until reach- 
ing the end or an orphan. During the replay, the status is 
replaying. Then the status is set back to normal and p 

continues in the manner before the crash. 
For each p, let lp be the value of last-logged-indexp just 

before p crashes or receives an Init message, and let vp be 
the value of TDplp] when status(p) switches from replay- 
ing to normal, i.e., the index of the state interval to which p 

recovers. 
Lemma 3 states that the TD variables correctly track the 

transitive dependencies between application state intervals. 
This lemma, together with Lemma 2, is used to prove 
Theorem 4, which states that the algorithm finds the max- 
imum consistent global state below the last logged indexes 
(at the time the processes begin the recovery). 

Lemma 3: In every state of e, for all p and q. TD#q] is 
the index of the highest state interval of q on which p’s 
current state interval transitively depends. 

Theorem 4: The maximum consistent global state 
below (Zl, . . . ,1,) is (vl, . . . ,v,). 

Now we define the mappings. For each p, divide e into 
five parts: 
l Part 1 for p goes from the first state in e to the state 
immediately before the Crash/Restart(p) action, 
Recv@,Init(Z),q) action, or the (vp+l)-st occurrence of a 
Deliver@,.,.) action, whichever occurs first. 

l Part 2 for p goes from immediately after the end of Part 1 
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to the state immediately before the Crash/Restart@) or 
Recv@,Init(Z),q) action. (It can be empty.) 

l Part 3 for p goes from immediately after the end of Part 2 
to the state immediately before the Restore@) action (i.e., 
it is the time when status@) has value recovering). 

l Part 4 forp goes from immediately after the end of Part 3 
to the last state in which sratus@) has value replaying. If 
the next action in Q is SendOut@,M) that also occurred 
earlier in e, then this action is included in part 4 for p. (If 
no states have stutusp equal to replaying, then part 4 for p 
consists solely of the Restore@) action.) 

l Part 5 for p goes from immediately after the end of Part 4 
to the end of the execution. 

The extra condition in the definition of part 4 is needed 
to handle the case when part 3 for p begins before p’s vp-th 

SendOut action occurs. Thus in the replay, the last Sen- 
dOut is not a duplicate of a previous action from part 1. 

The action mapping essentially deletes all actions for p 

between the time p reaches its vp-th state interval at the end 
of part 1 and the time p finishes replaying at the end of part 
4, except for In and Out actions, and Send and Recv actions 
for messages that were either generated in the sender’s part 
1 or were generated in the sender’s part 4 and are not 
duplicates (Le., the first copy of this message was lost from 
the sender’s outq at the start of part 3). The state mapping 
reflects the values of re&y and App’@) during parts 1 and 
5 for p and freezes them during parts 2, 3, and 4 at their 
values at the end of part 1. The most complicated part of 
the state mapping is defining the contents of the message 
queues to reflect the action mapping correctly. 

Let NA be the set of all integers between 1 and Zen@(e) 
inclusive. Define a mapping A from NA to ac?s(RSys) u 
{E}, where E is the empty string, as follows. 
l Ifni is In@,m) or Out@& then A(i)=xk 
l If ni is Deliver@,m,q) or SendOut@Jlrf), then A(i)=lri if ni 
is in part 1 or 5 forp and A(i)=& otherwise. 

l Suppose Xi is Recv@,(m,V),q). A(i)= Rav@,m,q) if 111 is 
generated in q’s part 1 or 5 or if m is generated in q’s part 
4 and there is no preceding ~:i action in e. Otherwise 
A(i)=&. 

l Suppose Zj is Send@,(m,V),q). A(i)= Send@,m,q) if m is 
generated in p’s part 1 or 5 or if m is generated in p’s part 
4 and there is no preceding ni action in e. Otherwise 
A(i)=E. 

l For any other value of np A(i)=&. 

We add subscripts to the state variables in order to dis- 
tinguish the same variable at different nodes. Each variable 
of Buff@) or Recov@) is subscripted with p. The channel 

variable of Channel@,q) is subscripted with pq. 

Let Ns be the set of all integers between 0 and Zen@(e) 

inclusive. Define a mapping S from Ns to stutes(RSys) as 
follows. For S(i), we must define the state of App@), as 
well as values for channel p4’ ivp[41. o%p[41, a& 
readyp, for all p and q. 
l App@): SZNIX as App’@) in s if Sj is in part 1 or 5, 
otherwise the same as App’@) in e at the end of part 1. 

l ready : sameasreadypinsifsiisinpart 1 or5forp; 
same $J reudyp at end of part 1 for p if Si is in part 2.3 or 
4 for p. 

l inqp[q], q#env: Take the sequence of application mes- 
sages in Recv@,.,q) actions in e up to sfi discard any mes- 
sages generated in q’s part 2, discard any messages 
generated in q’s part 4 that are duplicates of any generated 
in q’s part 1, and discard any messages already delivered 
to APP’@). 

l inqp[env]: Take the sequence of messages in In@,.) ac- 
tions in e up to Si and discard any messages delivered in 
p’s part 1. 

l outq 
B 

[q], q f env: Take the sequence of messages for q in 
Sen Out@,.) actions in e up to si, discard any messages 
generated in p’s part 2, 3 or 4, and discard any messages 
already sent (in a Send@,(m,V),q) action). 

l outq 
B 

[env]: Take the sequence of messages for env in 
Sen Out@,.) actions in e up to si, discard any messages 
generated in p’s part 2, 3 or 4, and discard any messages 
already sent (in an Out@,m) action). 

l channel 
Send@,.fq 9 

: Take the sequence of application messages in 
actions in e up to si, discard any messages 

generated in p’s part 2, discard any messages generated in 
p’s part 4 that are duplicates of any generated in p’s part 
1, and discard any messages already received. 
Define a mapping p from Ns to alternating sequences of 

states of RSys and actions of RSys inductively as follows. 
p(O)=S(O). If A(i) is empty, then p(i)=p,(i-1), otherwise 
p(i)=p(i-l)A(i)S(i). Define e’ to be the limit of p(i), i2 1. 

Lemma 5 states that the mappings satisfy certain con- 
ditions. Lemma 6 shows that consequently e’ is the desired 
execution of RSys. 

Lemma 5: (a) A(i)lext(RSys) -IF#Xt(FSyS) for all i in 

NA* 
(b) S(0) is the start state of RSys. 
(c) Choose any i in NA. If A(i) is empty, then 

S(i-l)=S(i). If A(i) is not empty, then (S(i-l),A(i),S(i)) is a 
transition of RSys. 

Proof: Parts (a) and (b) are true by the definitions of the 
mappings. We sketch the proof of (c) for two interesting 
cases. 

Case 1: 7Ei’ Out@,m). So (m,V) is at the head of 
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outqp[env] and VlNp III Si-1. We must show that m is at 
the head of oufqp[env] in S(i-1). 
l Suppose Ici is in part 2 for p. We must show that m is 
generated in part 1 for p. This is equivalent to showing 
that V/p] I vp Recall that V<Np. We can show that in 
parts 1 and 2 for p, A$<($, . . . ,1,) (where Zp is the last 
logged index at the end of part 1 for p). By Theorem 2, 
(q, * * * ,v,) is the maximum consistent global state below 

(11 , . . . ,I,). By Lemma 1, V is a consistent state and by 
the above argument Vl(Z1, . . . &). TllUS 

VI(Vl, . . . ,v,). 

l Suppose xi is in part 5 for p, The heart of the argument is 
that p’s part 4 mimics part 1 and S-lust-out correctly fil- 
ters out duplicate outputs. 

Case 2: nl= Deliver@,m,q). If q=env, then (m,V) is at 
the head of inqp[env] in siml, and if q #env, then (m,V) is 
the first entry in inqp[q] with v[q] > DDp[q]. 
l Suppose i is in part 1 forp. It is enough to show that m is 
at the head of inqp[ql in S(i-1). If q=env, this is obvious. 
Suppose q#env. By Theorem 2, (vl, . . e ,v,) is a coosis- 
tent global state. Thus all messages delivered in part 1 of 
p are generated in part 1 of q. Thus Qq] I ‘(4. The defini- 
tion of S implies that m is in inqp[q] in S(l--1). It can be 
shown that M is at the head of inqp[q] in Si-1, and thus m 
is at the head of inqp[q] in S(i-1). 

l Suppose i is in part 5 for p. If q=env, then it is enough to 
show that S-inpurs and num-in-delivered correctly cause 
inq P [envl to be set after the replaying. If q f env, then it is 
enough to show that the replaying of q mimics the com- 
putation of q during part 1 for q. 

Lemma 6: e’ is an execution of RSys and e’lext(RSys) = 
elext(FSys). 

Proof: By part (a) of Lemma 5, the external behaviors 
are the same. Use parts (b) and (c) of Lemma 5 to show 
inductively that for all i, p(i) is an execution of RSys and 
S(i) is the final state of p(i). 

We now show that if e is fair, then e’ is also fair. 
Lemma 7: If e is fair, then e’ is fair. 
Proof: We must show that once a locally-controlled (i.e., 

output or internal) action of RSys becomes enabled in e’, it 
eventually occurs or becomes disabled in e’. The argument 
for Out(p,m) is based on the fact that messages continue to 
be logged and Notify messages continue to he sent, so that 
eventually every output at the front of the output queue can 
be committed. 

4.5. Checkpointing 
In the algorithm just presented, the stable logs (S-log 

and S-inputs) grow without bound, forever increasing. Ob- 
viously this causes space problems. In addition, the longer 
the log is, the more time it takes processes to complete the 
recovery procedure. These problems can be avoided by 
periodically s ummarizing some prefix of the logs in a 
checkpointed state of the application process. 

Define an application state interval to be guurunteed 

relative to a state of Recov@) if the state interval is started 
by message (m,V) and vlq]<N[q] for all q in P. A 
guaranteed state interval will never be rolled back. Periodi- 
cally each process p sends a “guarantee” message to each 
other process q containing the value of DDp[q] (direct 
dependency) associated with its maximum guaranteed state 
interval. Upon receiving a guarantee message with value 1 

from q, process p updates Cp[q] to be equal to 1. Process p 

need never resend to q any message generated in p’s state 
interval 1 or earlier, since q has all these messages in stable 
storage and will never roll back past them. 

Process p may perform the Chkpt@) action to compact 
the logs up to state interval 1, where 1 is coniputed as fol- 
lows. Let 1 be the maximum state interval index such that 
for all qzp, either Z<C[ql or no application message is 
generated for q in any state interval between C[q] and 1. 

The logs can be compacted up to state interval I because p 

will never roll back past I, and for every state interval of p 

up to I, no application message that p sends in that state 
interval ever needs to be resent. The state of App’@) cor- 
responding to the I-th state interval, as well as the as- 
sociated values of tbe direct and indirect dependency vec- 
tors and the number of inputs delivered, are stored in 
S-chkpt, S-DD, S-TD, and S-num-in-delivered, 

4.6. Optimization 
So far, we have been assuming that during recovery, 

each recovery process only uses application messages that 
are logged on stable storage. For each of the non-failed 
nodes, the incoming messages that have been delivered but 
not yet logged are available in volatile storage, waiting to 
be logged. The recovery processes on these nodes can use 
the messages in volatile storage in addition to those logged 
on stable storage to recover. 
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it may not be necessary for the application process on a 
non-failed node to rolI back. In order to decide whether an 
application process should roll back, the algorithm in Sec- 
tion 4.2 can be modified as follows. 

In response to an Init message, each recovery process 
sends its current state interval index in the Relay message 
and does not discard its volatile log of delivered messages. 
Once L is filled in, p determines if its current application 
state interval depends on a state interval LEq]+l of any q, 

i.e., if TD[q] > L[q]. If so, then p restores the application 
state to the checkpoint and replays the delivered messages 
logged in stable storage and in voiatile storage until au 
orphan is reached. 

5. Algorithm Without Transitive Dependencies 
In this section we present a recovery procedure that uses 

direct dependencies instead of transitive dependencies. 
The key part of the recovery procedure is a distributed 
algorithm for finding the maximum consistent global state, 
using the logs and checkpoints at the nodes. When a node 
restarts after a crash, it.invokes the above algorithm so that 
the ap&cation processes can be restored to the appropriate 
states. This algorithm is also invoked periodically during 
normal computation, for the purpose of committing output 
messages and compacting logs. 

Every application message sent is tagged with the index 
of the current state interval of the sender. Whenever a 
recovery process logs a message, it also logs the tag and the 
id of the sender with the message. 

5.1. Finding the Maximum Consistent Global State 
In order to find a maximum consistent global state, the 

recovery processes use the following algorithm. The algo- 
rithm is initiated by one recovery process broadcasting an 
Initiate message containing the highest index of all mes- 
sages logged by that recovery process. After receiving the 
first Initiate message, each recovery process sends the 
highest index of all its logged messages to all the other 
processes. After this, recovery process p executes the fol- 
lowing. It maintains two n-vectors, old-indexp and 
new-indexp, which contain indices of state intervals. 

Initially, for each q#p, oZd-index[p[q] contains nil. 
1. For each q#p: wait and receive a value from q into 

the variable new-index$q]. 

2. If for each qzp, old-indexp[q]= new-indexp[q], then 
exit. Starting from the beginning of the log, find the ear- 
liest message such that the next message was generated by 
some process q in a state interval with index > 
new-inde.xp[q]. Let Lp be the index of this message. (If 
there is no such message, let Lp be the index of the last 
message in the log.) Send Lp to every other recovery 
process q. Update oZd-indexp to be new-indexp. 

For alI p, let Zp be the index of the last logged state 
interval at process p when it begins the algorithm (i.e., 
when it receives the Initiate message for nodes other than 
the initiator, and when it sends it for the initiator). 

Theorem 8: If there are no failures after the initiation of 
algorithm AO, each recovery process exits the algorithm 
after at most n iterations, and the values contained in 
Lip a s a ,Ln when a recovery process exits the algorithm 
form the maximum consistent global state below 
(Zl>. . . J,>. 

proof: (Sketch) Consider an execution. We say that the 
state interval s of process p has level m dependency, m2 1, 
on state interval t of process q if and only if there exist 
distinct processes rl, . . . 7m+l with respective state inter- 
vals q,. - - Pm+17 such that rl=q, ~-m+~=p, tlul. 
u~+~=s, and for all x such that l<x<m+l, a message 
generated in state interval ux of process rx is processed by 
some state interval before ux+l of process rx+I. Level 1 
dependency is the same as direct dependency. Note that in 
an execution of a system with n processes, if a state interval 
s of some process transitively depends on state interval t of 
another process, then s has level m dependency on t, for 
somem-cn. 

It is easy to show that in the above algorithm, after a 
recovery process executes i iterations, the variable 
old-index gives the maximum state interval index in the log 
such that all the state intervals below this do not have a 
level i dependency on the state intervals ZI, . . . ,l,, of 
processes 1, . . . ,n respectively. This clearly shows that the 
execution of the above procedure terminates within R itera- 
tions. From our previous arguments, it follows that Lp after 
termination is the maximum state interval index of process 
p within the log such that, for ah q, none of the state inter- 
vals of process p with index 5Lp depends on a state inter- 
val of process q with index above 5. Now using Lemma 2, 
it follows that (Ll, . . . J,) is the maximum consistent 
global state below (II, . . . ,Z,). 
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5.2. Recovery Procedure 
Whenever a node fails and restarts, its recovery process 

initiates the algorithm of Section 5.1 to compute the max- 
imum consistent global state, and each recovery process 
restores its application process to this state. After a 
recovery process receives a first recovery message, it ig- 
noms and deletes any more application messages that it 
receives between successive recovery messages. This 
serves the purpose of flushing out any dangling application 
messages that were sent before the recovery started. After 
a process exits the above procedure, it will replay the log 
starting from the local checkpoint until the state interval 
index computed by the previous algorithm is reached. Any 
messages generated during this procedure will be sent to 
the respective destination processes. It will also purge the 
old log beyond the state interval index as computed above. 
Duplicate messages are handled as in the case of the algo- 
rithm in Section 4. 

In order to update checkpoints, commit output messages 
(that is, enabling the output actions associated with the out- 
puts), and compact the log, we use the following procedure. 
As in the case of the algorithm in section 4, output mes- 
sages are held in a queue until they are sent out. The 
processes periodically execute the algorithm to compute the 
maximum consistent global state. Let ml, . . . ,mn be the 
state interval indices computed by the algorithm of Section 
5.1. Now each process p can commit all outputs that were 
generated before or during the state interval mp, because 
process p knows that it cannot roll back to a position before 
mp. It will be tempting to conclude that the local check- 
points of the process p can be updated to mp However, 
this can create a problem for the following reason: Sup- 
pose process p generated a message for process q before 
p’s mp-th state interval, and this message was not delivered 
to App’(q) before q’s mq-th state interval. Although 
process p will never roll back to a point below mp, it still 
needs to keep some of the messages below m 

P in order to 
regenerate messages of the above kind during possible fu- 
ture recovery. 

Let kp be the maximum state interval index of process p 
below mp, such that, for all q #p, all messages generated by 
p for process q before kp are delivered before mq. Now 
process p can compact all logged messages below kp and 

install a new checkpoint at kp. In order to compute the 
values of kp, the processes exchange another round of mes- 
sages after computing the maximum consistent global state. 
In this round, each process q, for all p #q, finds the most 
recent message fromp that is in the log of q below m 

4 and 
sends to p the state interval index of p on which this mes- 
sage directly depends. Using these state interval indices, 
process p can determine the value of kp, and advance the 
checkpoint to kp, and get rid of logged messages below kp 

The above recovery procedure will work properly as 
long as there are no further failures during the recovery 
procedure. 

6. Extensions 

6.1. Networks 
In the algorithms presented in sections 4 and 5, each of 

the processes sends messages to each of the other 
processes. This may not be a desirable if the number of 
processes is large and the communication network is not 
fully connected. We show, below, how the second algo- 
rithm can be modified so that each of the recovery 
processes only communicates with its neighbors on the net- 
work. 

The key part of the second algorithm is the procedure to 
compute the maximum consistent global state. We present 
a different implementation of the algorithm given in Sec- 
tion 5.1. Each process maintains a local variable L. The 
algorithm is initiated by some process by sending an 
initiate message to all of its neighbors. After receiving the 
first initiate message, a process sends initiate messages to 
all its neighbors; any subsequent initiate messages will be 
ignored by the process. After sending initiate messages to 
all its neighbors, a process sets L to the maximum state 
interval index up to which it has logged messages, and then 
it sends a recovery message with the value of L to all its 
neighbors. After this, each process repeats the following 
procedure. 

1. wait and receive a recovery 
message from any of the neighbors; 

2. if the message received in step 1 is from process q 
and contains value m 
and a message from q, generated in a state interval with 
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index greater than m has been logged then 
set r to the index of the earliest such message, 
if r<L then 

SetLtor 
send a recovery message with value L 

to all the neighbors 
endif 

endif 

A global state in which no recovery messages are being 
processed at any node and no recovery messages are wait- 
ing to be processed either in the channels or at tbe nodes, is 
called a quiescent state. It is easy to show that, during the 
execution of the above algorithm, whenever the system of 
processes reach a quiescent state then it remains in this 
state forever. It is also not difficult to show that, after the 
initiation of the above algorithm, the processes eventually 
reach a quiescent state, and in this state, the values of the 
variables L at the different nodes give the maximum consis- 
tent global state. We say that the above algorithm has 
terminated at an instance of its execution if the global state 
at this instance is a quiescent state. Termination of the 
above algorithm can be detected using the algorithms of 
[CM]. After the termination is detected, each of the 
processes will be notified and they will continue with the 
remainder of the computation. 

As pointed out earlier, the above algorithm for finding 
the maximum consistent global state can be used to tind the 
global state to which processes roll back after a recovery; it 
can also be used periodically for committing outputs to the 
external world. 

6.2. Committing Outputs 
The model of the reliable system assumes that outputs 

are buffered before they are sent out. However, another 
possibility is to assume that outputs are immediately sent to 
the environment without buffering in the reliable system. 
In this case, the methods for committing outputs presented 
in the previous algorithms is inadequate for the following 
reason. The order in which outputs occur at different nodes 
in the new model is consistent with the transitive depen- 
dency relation. This is not true in the old model, because 
the outputs are buffered and released independently. To 
commit outputs correctly in the new model, a node must 
only commit an output after it has been informed that all 
outputs generated in the state intervals on which the current 

state interval transitively depends have occurred. 
The following simpler algorithm for committing outputs 

works whether outputs are buffered or not. Whenever a 
state interval is committed then the outputs generated in the 
state interval are committed. ln this protocol, the processes 
use a special type of messages called committed messaga 
Process p commits the state interval s if the following con- 
ditions are satisfied p has logged the message m that in- 
itiated the state interval s; if m is generated by process q in 
its state interval I then p has already received a committed 
message from 4 with argument value r; and p has already 
committed the state interval s-l. Immediately at& com- 
mitting the state interval S, p sends out all the outputs to the 

external world that were generated during the state interval 
S, and simultaneously writes the index of s into a location 
called mux-committed-stute in stable storage so that it will 
not resend the outputs of s again after a failure. Then it 
sends committed messages with argument value s to all its 
neighbors. 

It can easily be shown that whenever the above proce- 
dure commits the outputs generated during a state interval, 
that state interval will never be rolled back. The advantage 
of this approach over the one used in Section 5 is that the 
processes do not need to compute the maximum consistent 
global state in order to commit outputs. The disadvantage 
of this method is that it may take longer to commit outputs 
than in the case of the previous algorithms; also, the num- 
ber of messages used are proportional to the number of 
messages sent during the actual execution of the applica- 
tion processes. 

It is also not difficult to see that the maximum com- 
mitted state intervals at any instance form a consistent 
global state. We can use these committed state intervals for 
the purpose of recovery also. Whenever a process restarts 
after a failure, it recovers to the state given by the variable 
max-committed-state and sends initiate messages to all the 
other processes; after receiving the initiate message, each 
of the other processes recovers to the state given by the 
max-committed-state. The disadvantage of this recovery 
method is that the processes may not recover to the max- 
imum consistent global state. 
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6.3. Decomposing Large Networks 
One of the disadvantages of using all the previous ap- 

proaches to large networks is the following. All these 
methods may cause a node far removed from the failed 
node to be rolled back. This may be undesirable and can be 
avoided using the following approach. 

Consider a network N and let P,Q be a partition of the 
nodes such that the graph of N restricted to each of P,Q is 

connected. We want to prevent a roll back of an execution 
of a process in Q due to a failure of a node in P, and vice 
versa. To achieve this, we use independent recovery al- 
gorithms for nodes in P and Q. For each link @,q), where p 
is in P and q is in Q, the recovery algorithm for the nodes 
in P treats all messages sent on this link as outputs to the 
environment, that is, it sends these messages only when it 
has made sure that the state interval generating the mes- 
sages will never be rolled back. The recovery procedure 
for Q treats messages on the link @,q) as inputs from the 
environment, that is, the recovery process at node q logs an 
input message fromp immediately after its arrival and then 
releases it to the local application process. If the node q 

fails and restarts, then after the restart, it queries node p for 
any messages that were sent during the failure period, such 
messages can be regenerated by p using its log. Also, in 
order to compact the log at node p, process q may periodi- 

cally need to send to p the sequence number up to which q 

has logged the incoming messages from p. 

It is easy to see that if the above approach is used, then 
any failure among the nodes in P will not cause a roll back 
of any computation at a node in Q, and vice versa. The 
recovery procedures used for P and Q can be entirely dif- 
ferent. Also, if we use the recovery methods given in this 
paper, then the whole network will be able to function 
properly even if there are simultaneous failures of a node in 
PandofanodeinQ. 

The above approach can be used with respect to any 
partition (PlQ2.. . 9,) of the network as long as the 
graph of the network restricted to each Pi is connected. The 
partition can be conveniently chosen. For example, if the 
network is composed of various local area networks con- 
nected by gateways then the nodes can be partitioned so 
that all nodes belonging to the same local area network 
form one group of the partition. 

The disadvantage of this approach is that it may slow 
down the application computation because messages on 
links connecting nodes in different groups of the partition 
must be logged before they are delivered to the application 
processes. This is the price we pay for shielding the 
processes in one group of the partition from failures in a 
different group. 
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Appendix 
In this Appendix, we review the aspects of the model 

from [LT] that are relevant to this paper. 
An input-output automaton A is defined by the following 

components. (1) There is a (possibly infinite) set of states 
with a subset of start states. (2) There is a set of actions, 
partitioned into input, output, and internal actions. The 
input and output actions are the external actions of A, 
denoted ext(A). (3) The transition relation is a set of (state, 
action, state) triples, such that for any state s’ and input 
action n, there is a transition (S’JZJ) for some state s. (In- 
put actions are presumed to originate in the automaton’s 
environment: consequently the automaton must be able to 
react to them no matter what state it is in. > Action x is 
enabZed in state s’ if there is a transition (r’,rr,r) for some 
state s. 

An execution e of A is a finite or infinite sequence 
s()qs1 . . . of alternating states and actions such that SO is 
a start state, (Si-lPi~i) is a transition of A for all i, and if e 
is finite then e ends with a state. The schedule of an execu- 
tion e is the subsequmce of actions appearing in e. 

Let A be an automaton and P be a predicate on se- 
quences of actions of A. A preserves P if for every 
schedule &J of A such that P is true of fl and a is a locally- 
controlled action of A, then P is also true of pa. 

Automata can be composed to form another automaton. 
Automata to be composed must have no output actions in 
common, and the internal actions of each must be disjoint 
from all the actions of the others. A state of the composite 
automaton is a tuple of states, one for each component. A 
start state of the composition has a start state in each com- 
ponent of the state. Any output action of a component 
becomes an output action of the composition, and similarly 
for an internal action. An input action of the composition 
is an action that is input for every component for which it is 
an action. In a transition of the composition on action 7r, 
each component of the state changes as it would in the 
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component automaton if R occurred; if n is not an action of 
some component automaton, then the corresponding state 
component does not change. 

Given an automaton A and a subset II of its actions, we 
can hide the actions in II to form an automaton differing 
from A only in that each action in II becomes an internal 
action. This operation is useful for hiding actions that 
model interprocess communication in a composite 
automaton, so that they are no longer visible to the environ- 
ment of the composition. 

Execution e of automaton A is fair if for each locally- 
controlled action r~, the following two conditions hold. (1) 
If e is finite, then n is not enabled in the final state of e. (2) 
If e is infinite, then either ‘IE appears infinitely often in e, or 
states in which n is not enabled appear infinitely often in e. 

Rec’A~.rn.~) 
- 

- 

Mpm) 


